Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A humanized MDCK cell line for the efficient isolation and propagation of human influenza viruses



Here, we developed hCK, a Madin-Darby canine kidney (MDCK) cell line that expresses high levels of human influenza virus receptors and low levels of avian virus receptors. hCK cells supported human A/H3N2 influenza virus isolation and growth much more effectively than conventional MDCK or human virus receptor-overexpressing (AX4) cells. A/H3N2 viruses propagated in hCK cells also maintained higher genetic stability than those propagated in MDCK and AX4 cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Generation and characterization of hCK cells and their sensitivity to human influenza virus growth and isolation.

Data availability

The data that support the findings of this study are available from the corresponding authors on request. DNA sequencing data from this study are available under the NCBI BioProject accession number PRJNA525907.


  1. 1.

    Gamblin, S. J. & Skehel, J. J. J. Biol. Chem. 285, 28403–28409 (2010).

    CAS  Article  Google Scholar 

  2. 2.

    Chambers, B. S., Li, Y., Hodinka, R. L. & Hensley, S. E. J. Virol. 88, 10986–10989 (2014).

    Article  Google Scholar 

  3. 3.

    Lee, H. K. et al. PLoS ONE 8, e79252 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    Tamura, D. et al. Antimicrob. Agents Chemother. 57, 6141–6146 (2013).

    CAS  Article  Google Scholar 

  5. 5.

    Lin, Y. et al. Influenza Other Respir. Viruses 11, 263–274 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    Li, D. et al. J. Clin. Microbiol. 47, 466–468 (2009).

    Article  Google Scholar 

  7. 7.

    Oh, D. Y., Barr, I. G., Mosse, J. A. & Laurie, K. L. J. Clin. Microbiol. 46, 2189–2194 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    Mohr, P. G., Deng, Y. M. & McKimm-Breschkin, J. L. Virol. J. 12, 67 (2015).

    Article  Google Scholar 

  9. 9.

    Lin, Y. P. et al. J. Virol. 84, 6769–6781 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    Zhu, X. et al. J. Virol. 86, 13371–13383 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    Connor, R. J., Kawaoka, Y., Webster, R. G. & Paulson, J. C. Virology 205, 17–23 (1994).

    CAS  Article  Google Scholar 

  12. 12.

    Rogers, G. N. & Paulson, J. C. Virology 127, 361–373 (1983).

    CAS  Article  Google Scholar 

  13. 13.

    Stevens, J. et al. J. Mol. Biol. 355, 1143–1155 (2006).

    CAS  Article  Google Scholar 

  14. 14.

    Lin, S. C., Kappes, M. A., Chen, M. C., Lin, C. C. & Wang, T. T. PLoS ONE 12, e0172299 (2017).

    Article  Google Scholar 

  15. 15.

    Hatakeyama, S. et al. J. Clin. Microbiol. 43, 4139–4146 (2005).

    CAS  Article  Google Scholar 

  16. 16.

    Matrosovich, M., Matrosovich, T., Carr, J., Roberts, N. A. & Klenk, H. D. J. Virol. 77, 8418–8425 (2003).

    CAS  Article  Google Scholar 

  17. 17.

    van Riel, D. et al. Science 312, 399 (2006).

    Article  Google Scholar 

  18. 18.

    Shinya, K. et al. Nature 440, 435–436 (2006).

    CAS  Article  Google Scholar 

  19. 19.

    Cong, L. et al. Science 339, 819–823 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    Jinek, M. et al. Science 337, 816–821 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    Han, J. et al. Cell Rep. 23, 596–607 (2018).

    CAS  Article  Google Scholar 

  22. 22.

    Shalem, O. et al. Science 343, 84–87 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    Takashima, S. & Tsuji, S. Trends Glycosci. Glycotechnol. 23, 178–193 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    Chu, V. C. & Whittaker, G. R. Proc. Natl Acad. Sci. USA 101, 18153–18158 (2004).

    CAS  Article  Google Scholar 

  25. 25.

    Hidari, K. I. et al. Biochem. Biophys. Res. Commun. 436, 394–399 (2013).

    CAS  Article  Google Scholar 

  26. 26.

    Shibuya, N. et al. J. Biochem. 106, 1098–1103 (1989).

    CAS  Article  Google Scholar 

  27. 27.

    Chambers, B. S., Parkhouse, K., Ross, T. M., Alby, K. & Hensley, S. E. Cell Rep. 12, 1–6 (2015).

    CAS  Article  Google Scholar 

  28. 28.

    Skowronski, D. M. et al. Euro Surveill. 21, 30112 (2016).

    Article  Google Scholar 

  29. 29.

    Saito, T. et al. J. Med. Virol. 74, 336–343 (2004).

    CAS  Article  Google Scholar 

  30. 30.

    Lenth, R. V. J. Stat. Softw. 69, 1–33 (2016).

    Article  Google Scholar 

  31. 31.

    Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

Download references


We thank S. Watson for scientific editing. We also thank N. Midorikawa for technical assistance. In addition, we thank E. Adachi, T. Koibuchi, T. Kikuchi, M. Koga, H. Yotsuyanagi, A. Tokita and N. Wada for providing us with the clinical specimens from patients with influenza-like symptoms. Flow cytometry was performed in the IMSUT FACS Core laboratory; we acknowledge the IMSUT FACS Core laboratory for assistance with the flow cytometric analysis. This research was supported by Leading Advanced Projects for medical innovation (LEAP) from the Japan Agency for Medical Research and Development (AMED) (JP18am001007), by Grants-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Science, Sports, and Technology (MEXT) of Japan (nos. 16H06429, 16K21723 and 16H06434), by the Japan Initiative for Global Research Network on Infectious Diseases (J-GRID) from AMED (JP18fm0108006), by an e-ASIA Joint Research Program from AMED (JP17jm0210042), by a Research Program on Emerging and Re-emerging Infectious Diseases from AMED (JP18fk0108104), by a Grant-in-Aid for JSPS Research Fellows (17J04123) and by the NIAID-funded Center for Research on Influenza Pathogenesis (CRIP; HHSN272201400008C).

Author information




K.T., C.K., S.F., S.C., G.Z., C.G., K.S., S.T., Y.S.-T., J.D., Z.K., D.K., H.v.B., S.Y. and M.I. performed the experiments. K.T., C.K., S.F., S.T., T.J.S.L., T.W., M.I. and Y.K. planned the experiments and/or analysed the data. K.T., T.J.S.L., M.I. and Y.K. wrote the manuscript.

Corresponding authors

Correspondence to Masaki Imai or Yoshihiro Kawaoka.

Ethics declarations

Competing interests

K.T., C.K., S.F., S.C., G.Z., C.G., K.S., S.T., T.J.S.L., J.D., Z.K., D.K., H.v.B., Y.S.-T., S.Y., T.W. and M.I. declare no competing interests. Y.K. has received speaker’s honoraria from Toyama Chemical and Astellas and grant support from Chugai Pharmaceuticals, Daiichi Sankyo Pharmaceutical, Toyama Chemical, Tauns Laboratories and Otsuka Pharmaceutical, and is a founder of FluGen.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Data and Discussion, Supplementary Methods, Supplementary Figures 1–3, Supplementary Tables 1–8 and Supplementary References.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Takada, K., Kawakami, C., Fan, S. et al. A humanized MDCK cell line for the efficient isolation and propagation of human influenza viruses. Nat Microbiol 4, 1268–1273 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing