Global diversity and biogeography of bacterial communities in wastewater treatment plants


Microorganisms in wastewater treatment plants (WWTPs) are essential for water purification to protect public and environmental health. However, the diversity of microorganisms and the factors that control it are poorly understood. Using a systematic global-sampling effort, we analysed the 16S ribosomal RNA gene sequences from ~1,200 activated sludge samples taken from 269 WWTPs in 23 countries on 6 continents. Our analyses revealed that the global activated sludge bacterial communities contain ~1 billion bacterial phylotypes with a Poisson lognormal diversity distribution. Despite this high diversity, activated sludge has a small, global core bacterial community (n = 28 operational taxonomic units) that is strongly linked to activated sludge performance. Meta-analyses with global datasets associate the activated sludge microbiomes most closely to freshwater populations. In contrast to macroorganism diversity, activated sludge bacterial communities show no latitudinal gradient. Furthermore, their spatial turnover is scale-dependent and appears to be largely driven by stochastic processes (dispersal and drift), although deterministic factors (temperature and organic input) are also important. Our findings enhance our mechanistic understanding of the global diversity and biogeography of activated sludge bacterial communities within a theoretical ecology framework and have important implications for microbial ecology and wastewater treatment processes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The GWMC captures microbial diversity of globally distributed WWTPs.
Fig. 2: Abundance, composition and functional importance of the global core OTUs in activated sludge.
Fig. 3: Comparing bacterial community compositions across continents and with other habitats.
Fig. 4: Spatial turnover of the activated sludge bacterial communities.
Fig. 5: Environmental drivers of the activated sludge community composition.

Data availability

The sample metadata are available in Supplementary Table 1. Sequences are available from the NCBI Sequence Read Archive with accession number PRJNA509305. OTU tables and representative sequences of the OTUs are available on the GWMC website (

Code availability

R codes on the statistical analyses are available at

Change history

  • 14 November 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.


  1. 1.

    Torsvik, V., Øvreås, L. & Thingstad, T. F. Prokaryotic diversity—magnitude, dynamics, and controlling factors. Science 296, 1064–1066 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Chase, J. M. & Myers, J. A. Disentangling the importance of ecological niches from stochastic processes across scales. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 2351–2363 (2011).

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Ofiţeru, I. D. et al. Combined niche and neutral effects in a microbial wastewater treatment community. Proc. Natl Acad. Sci. USA 107, 15345–15350 (2010).

    PubMed  Google Scholar 

  4. 4.

    Zhou, J. et al. High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. mBio 6, e02288-14 (2015).

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. USA 103, 626–631 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).

    PubMed  Google Scholar 

  8. 8.

    National Academies of Sciences, Engineering, and Medicine. Microbiomes of the Built Environment: A Research Agenda for Indoor Microbiology, Human Health, and Buildings (National Academies Press, 2017).

  9. 9.

    Mateo-Sagasta, J., Raschid-Sally, L. & Thebo, A. in Wastewater (eds Drechsel, P., Qadir, M. & Wichelns, D.) 15–38 (Springer, 2015).

  10. 10.

    Gleick, P. H. in Encyclopedia of Climate and Weather (ed. Schneider, S. H.) 817–823 (Oxford Univ. Press, 1996).

  11. 11.

    van Loosdrecht, M. C. & Brdjanovic, D. Anticipating the next century of wastewater treatment. Science 344, 1452–1453 (2014).

    PubMed  Google Scholar 

  12. 12.

    Xia, S. et al. Bacterial community structure in geographically distributed biological wastewater treatment reactors. Environ. Sci. Technol. 44, 7391–7396 (2010).

    CAS  PubMed  Google Scholar 

  13. 13.

    Grant, S. B. et al. Taking the ‘waste’ out of ‘wastewater’ for human water security and ecosystem sustainability. Science 337, 681–686 (2012).

    CAS  PubMed  Google Scholar 

  14. 14.

    Saunders, A. M., Albertsen, M., Vollertsen, J. & Nielsen, P. H. The activated sludge ecosystem contains a core community of abundant organisms. ISME J. 10, 11 (2016).

    CAS  PubMed  Google Scholar 

  15. 15.

    Zhang, T., Shao, M.-F. & Ye, L. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J. 6, 1137–1147 (2012).

    CAS  PubMed  Google Scholar 

  16. 16.

    Wagner, M. & Loy, A. Bacterial community composition and function in sewage treatment systems. Curr. Opin. Biotechnol. 13, 218–227 (2002).

    CAS  PubMed  Google Scholar 

  17. 17.

    Morlon, H. et al. Spatial patterns of phylogenetic diversity. Ecol. Lett. 14, 141–149 (2011).

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Shoemaker, W. R., Locey, K. J. & Lennon, J. T. A macroecological theory of microbial biodiversity. Nat. Ecol. Evol. 1, 107 (2017).

    PubMed  Google Scholar 

  19. 19.

    Locey, K. J. & Lennon, J. T. Scaling laws predict global microbial diversity. Proc. Natl Acad. Sci. USA 113, 5970–5975 (2016).

    CAS  PubMed  Google Scholar 

  20. 20.

    Curtis, T. P., Sloan, W. T. & Scannell, J. W. Estimating prokaryotic diversity and its limits. Proc. Natl Acad. Sci. USA 99, 10494–10499 (2002).

    CAS  PubMed  Google Scholar 

  21. 21.

    Ter Steege, H. et al. Hyperdominance in the Amazonian tree flora. Science 342, 1243092 (2013).

    PubMed  Google Scholar 

  22. 22.

    De Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).

    PubMed  Google Scholar 

  23. 23.

    Li, Y. et al. Dokdonella kunshanensis sp. nov., isolated from activated sludge, and emended description of the genus Dokdonella. Int. J. Syst. Evol. Microbiol. 63, 1519–1523 (2013).

    CAS  PubMed  Google Scholar 

  24. 24.

    Rosselló-Mora, R. A., Wagner, M., Amann, R. & Schleifer, K.-H. The abundance of Zoogloea ramigera in sewage treatment plants. Appl. Environ. Microbiol. 61, 702–707 (1995).

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Daims, H., Nielsen, J. L., Nielsen, P. H., Schleifer, K.-H. & Wagner, M. In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Appl. Environ. Microbiol. 67, 5273–5284 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Fisher, J. C., Levican, A., Figueras, M. J. & McLellan, S. L. Population dynamics and ecology of Arcobacter in sewage. Front. Microbiol. 5, 525 (2014).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Collado, L. & Figueras, M. J. Taxonomy, epidemiology, and clinical relevance of the genus Arcobacter. Clin. Microbiol. Rev. 24, 174–192 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Nielsen, P. H., Saunders, A. M., Hansen, A. A., Larsen, P. & Nielsen, J. L. Microbial communities involved in enhanced biological phosphorus removal from wastewater—a model system in environmental biotechnology. Curr. Opin. Biotechnol. 23, 452–459 (2012).

    CAS  PubMed  Google Scholar 

  30. 30.

    Lawson, C. E. et al. Rare taxa have potential to make metabolic contributions in enhanced biological phosphorus removal ecosystems. Environ. Microbiol. 17, 4979–4993 (2015).

    CAS  PubMed  Google Scholar 

  31. 31.

    Stokholm-Bjerregaard, M. et al. A critical assessment of the microorganisms proposed to be important to enhanced biological phosphorus removal in full-scale wastewater treatment systems. Front. Microbiol. 8, 718 (2017).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).

    PubMed  Google Scholar 

  33. 33.

    Martiny, J. B. H. et al. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4, 102–112 (2006).

    CAS  PubMed  Google Scholar 

  34. 34.

    Fuhrman, J. A. et al. A latitudinal diversity gradient in planktonic marine bacteria. Proc. Natl Acad. Sci. USA 105, 7774–7778 (2008).

    CAS  PubMed  Google Scholar 

  35. 35.

    Zhou, J. et al. Temperature mediates continental-scale diversity of microbes in forest soils. Nat. Commun. 7, 1208 (2016).

    Google Scholar 

  36. 36.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Google Scholar 

  37. 37.

    Martiny, J. B., Eisen, J. A., Penn, K., Allison, S. D. & Horner-Devine, M. C. Drivers of bacterial beta-diversity depend on spatial scale. Proc. Natl Acad. Sci. USA 108, 7850–7854 (2011).

    CAS  PubMed  Google Scholar 

  38. 38.

    Zhou, J. et al. Stochastic assembly leads to alternative communities with distinct functions in a bioreactor microbial community. mBio 4, e00584-12 (2013).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Knights, D. et al. Bayesian community-wide culture-independent microbial source tracking. Nat. Methods 8, 761–763 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Zhou, J. & Ning, D. Stochastic community assembly: does it matter in microbial ecology? Microbiol. Mol. Biol. Rev. 81, e00002–e00017 (2017).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Zhou, J. et al. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc. Natl Acad. Sci. USA 111, E836–E845 (2014).

    CAS  PubMed  Google Scholar 

  42. 42.

    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105 (2012).

    CAS  PubMed  Google Scholar 

  43. 43.

    Krause, S. et al. Trait-based approaches for understanding microbial biodiversity and ecosystem functioning. Front. Microbiol. 5, 251 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Bier, R. L. et al. Linking microbial community structure and microbial processes: an empirical and conceptual overview. FEMS Microbiol. Ecol. 91, fiv113 (2015).

    PubMed  Google Scholar 

  45. 45.

    Wells, G. F. et al. Ammonia-oxidizing communities in a highly aerated full-scale activated sludge bioreactor: betaproteobacterial dynamics and low relative abundance of Crenarchaea. Environ. Microbiol. 11, 2310–2328 (2009).

    CAS  PubMed  Google Scholar 

  46. 46.

    Karkman, A., Mattila, K., Tamminen, M. & Virta, M. Cold temperature decreases bacterial species richness in nitrogen-removing bioreactors treating inorganic mine waters. Biotechnol. Bioeng. 108, 2876–2883 (2011).

    CAS  PubMed  Google Scholar 

  47. 47.

    Griffin, J. S. & Wells, G. F. Regional synchrony in full-scale activated sludge bioreactors due to deterministic microbial community assembly. ISME J. 11, 500–511 (2017).

    CAS  PubMed  Google Scholar 

  48. 48.

    Tilman, D. Resource Competition and Community Structure (Princeton Univ. Press, 1982).

  49. 49.

    Wu, L. et al. Microbial functional trait of rRNA operon copy numbers increases with organic levels in anaerobic digesters. ISME J. 11, 2874–2878 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Pedrós-Alió, C. & Manrubia, S. The vast unknown microbial biosphere. Proc. Natl Acad. Sci. USA 113, 6585–6587 (2016).

    PubMed  Google Scholar 

  51. 51.

    Zhou, J. et al. Random sampling process leads to overestimation of β-diversity of microbial communities. mBio 4, e00324 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Zhou, J. et al. Reproducibility and quantitation of amplicon sequencing-based detection. ISME J. 5, 1303–1313 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Sinha, R. et al. Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium. Nat. Biotechnol. 35, 1077 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Ju, F. & Zhang, T. Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant. ISME J. 9, 683–695 (2015).

    CAS  PubMed  Google Scholar 

  55. 55.

    Xia, Yu. Diversity and Temporal Assembly Patterns of Microbial Communities in Municipal Wastewater Treatment Systems. PhD thesis, Univ. Tsinghua, Beijing, China (2016).

  56. 56.

    Buttigieg, P. L., Morrison, N., Smith, B., Mungall, C. J. & Lewis, S. E. The environment ontology: contextualising biological and biomedical entities. J. Biomed. Semantics 4, 43 (2013).

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Yilmaz, P. et al. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat. Biotechnol. 29, 415–420 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sc. 4, 439–473 (2007).

    Google Scholar 

  59. 59.

    Berube, A., Leal Trujillo, J., Ran, T. & Parilla, J. Global Metro Monitor (Brookings, 2015);

  60. 60.

    Wu, L. et al. Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis. BMC Microbiol. 15, 125 (2015).

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2011).

    CAS  PubMed  Google Scholar 

  62. 62.

    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).

    CAS  PubMed  Google Scholar 

  63. 63.

    Wen, C. et al. Evaluation of the reproducibility of amplicon sequencing with Illumina MiSeq platform. PLoS ONE 12, e0176716 (2017).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

    CAS  PubMed  Google Scholar 

  65. 65.

    McLaren, M. R. & Callahan, B. J. In nature, there is only diversity. mBio 9, e02149-17 (2018).

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Sievers, F. et al. Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    McIlroy, S. J. et al. MiDAS 2.0: an ecosystem-specific taxonomy and online database for the organisms of wastewater treatment systems expanded for anaerobic digester groups. Database 2017, bax016 (2017).

    PubMed Central  Google Scholar 

  70. 70.

    Delgado-Baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. Science 359, 320–325 (2018).

    CAS  PubMed  Google Scholar 

  71. 71.

    Stoddard, S. F., Smith, B. J., Hein, R., Roller, B. R. & Schmidt, T. M. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res. 46, D593–D598 (2014).

    Google Scholar 

  72. 72.

    McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610 (2012).

    CAS  PubMed  Google Scholar 

  73. 73.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    CAS  PubMed  Google Scholar 

  75. 75.

    AQUASTAT. FAO Gobal Information System on Water and Agriculture. Wastewater Section (FAO, 2014);

  76. 76.

    Sato, T., Qadir, M., Yamamoto, S., Endo, T. & Zahoor, A. Global, regional, and country level need for data on wastewater generation, treatment, and use. Agri. Water Manag. 130, 1–13 (2013).

    Google Scholar 

  77. 77.

    Foladori, P., Bruni, L., Tamburini, S. & Ziglio, G. Direct quantification of bacterial biomass in influent, effluent and activated sludge of wastewater treatment plants by using flow cytometry. Water Res. 44, 3807–3818 (2010).

    CAS  PubMed  Google Scholar 

  78. 78.

    The Sources and Solutions: Wastewater (United States Environmental Protection Agency, 2018).

  79. 79.

    Chan, W. Wastewater: Good To The Last Drop (China Water Risk, 2017);

  80. 80.

    Hanski, I. Dynamics of regional distribution: the core and satellite species hypothesis. Oikos 38, 210–221 (1982).

    Google Scholar 

  81. 81.

    Galand, P. E., Casamayor, E. O., Kirchman, D. L. & Lovejoy, C. Ecology of the rare microbial biosphere of the Arctic Ocean. Proc. Natl Acad. Sci. USA 106, 22427–22432 (2009).

    CAS  PubMed  Google Scholar 

  82. 82.

    Székely, A. J. & Langenheder, S. The importance of species sorting differs between habitat generalists and specialists in bacterial communities. FEMS Microbiol. Ecol. 87, 102–112 (2014).

    PubMed  Google Scholar 

  83. 83.

    Cheng, J. et al. Discordant temporal development of bacterial phyla and the emergence of core in the fecal microbiota of young children. ISME J. 10, 1002 (2016).

    PubMed  Google Scholar 

  84. 84.

    Ju, F. & Zhang, T. Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant. ISME J. 9, 683–695 (2015).

    CAS  PubMed  Google Scholar 

  85. 85.

    Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).

    CAS  PubMed  Google Scholar 

  86. 86.

    Oksanen, J. et al. vegan: Community Ecology Package. R version 2 (2013).

  87. 87.

    Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Chen, J. GUniFrac: Generalized UniFrac distances. R version 1 (2012).

  89. 89.

    Guo, X. et al. Climate warming leads to divergent succession of grassland microbial communities. Nat. Clim. Change 8, 813 (2018).

    Google Scholar 

  90. 90.

    Chase, J. M., Kraft, N. J., Smith, K. G., Vellend, M. & Inouye, B. D. Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere 2, art24 (2011).

    Google Scholar 

  91. 91.

    Stegen, J. C. et al. Quantifying community assembly processes and identifying features that impose them. ISME J. 7, 2069–2079 (2013).

    PubMed  PubMed Central  Google Scholar 

  92. 92.

    Kembel, S. W. Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecol. Lett. 12, 949–960 (2009).

    PubMed  Google Scholar 

  93. 93.

    Legendre, P., Lapointe, F. J. & Casgrain, P. Modeling brain evolution from behavior: a permutational regression approach. Evolution 48, 1487–1499 (1994).

    PubMed  Google Scholar 

  94. 94.

    Grace, J. B. & Bollen, K. A. Representing general theoretical concepts in structural equation models: the role of composite variables. Environ. Ecol. Stat. 15, 191–213 (2008).

    Google Scholar 

  95. 95.

    Rosseel, Y. Lavaan: an R package for structural equation modeling and more. Version 0.5–12 (BETA). J. Stat. Soft. 48, 1–36 (2012).

    Google Scholar 

  96. 96.

    Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).

    Google Scholar 

Download references


The authors thank T. Allen, A. Al-Omari, R. Bart, D. Crowley, G. Harwood, T. Hensley, S.-J. Huitric, M. M. L. Martins, A. Mena, B. Pathak, S. Pereira, D. E. Sauble, M. Taylor, P. Truong, D. VanderSchuur, A. Vieira and D. Zambrano for helping with sampling and metadata collection. This work was supported by the Tsinghua University Initiative Scientific Research Program (No. 20161080112), the National Scientific Foundation in China (51678335), the State Key Joint Laboratory of Environmental Simulation and Pollution Control (18L02ESPC) in China, and the Office of the Vice President for Research at the University of Oklahoma. Lin.W. and B.Z. were generously supported by the China Scholarship Council (CSC). J.Z. ( and D.N. ( serve as GWMC contacts.

Author information





All authors contributed experimental assistance and intellectual input to this study. The original concept was conceived by J.Z. Experimental strategies and sampling design were developed by J.Z., X.W., T.P.C., Q.H., Z. He. and D.N. Sample collections were coordinated by Q.H., D.N., X.W., T.P.C., B.Z., M.R.B., G.F.W., J.Z. and other GWMC members. J.D.V.N and D.N. managed shipping. Y. Li., B.Z., ZX.L., D.N. and some GWMC members (F.B., S.K., J.V., A.N., D.D.C.V., C.E., L.C., J.C.A., C.D.L., L.C.M-H., A.C., P. Bovio. and D.A.) did DNA extraction. P.Z. performed DNA sequencing with the help from Liy.W. Data analyses were performed by Lin.W., D.N., J.Z., B.Z., X.S., Q.Z., F.L., N.X. and R.T. with help from Y.D., Q.T., T.Z., Ya.Z and A.W. The manuscript was written by Lin.W., J.Z. and D.N. with the help from B.E.R., L.A.-C., M.W., C.S.C., D.A.S., G.F.W., J.M.T., P.J.J.A., J.K., J.V., P.H.N., R.G.L., X.W., Z. He. and Y.Y.

Corresponding authors

Correspondence to Qiang He or Thomas P. Curtis or Xianghua Wen or Jizhong Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–7, Supplementary Table 2, Supplementary Tables 4–10, Supplementary Table 13 and Supplementary References.

Reporting Summary

Supplementary Table 1

Summary of metadata.

Supplementary Table 3

OTUs identified as core community at the global scale or within each continent.

Supplementary Table 11

Diversity of Nitrosomonas species across WWTPs.

Supplementary Table 12

The diversity of Candidatus Accumulimonas, Candidatus Accumulibacter and Tetrasphaera species across WWTPs.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Ning, D., Zhang, B. et al. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat Microbiol 4, 1183–1195 (2019).

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing