Microorganisms in wastewater treatment plants (WWTPs) are essential for water purification to protect public and environmental health. However, the diversity of microorganisms and the factors that control it are poorly understood. Using a systematic global-sampling effort, we analysed the 16S ribosomal RNA gene sequences from ~1,200 activated sludge samples taken from 269 WWTPs in 23 countries on 6 continents. Our analyses revealed that the global activated sludge bacterial communities contain ~1 billion bacterial phylotypes with a Poisson lognormal diversity distribution. Despite this high diversity, activated sludge has a small, global core bacterial community (n = 28 operational taxonomic units) that is strongly linked to activated sludge performance. Meta-analyses with global datasets associate the activated sludge microbiomes most closely to freshwater populations. In contrast to macroorganism diversity, activated sludge bacterial communities show no latitudinal gradient. Furthermore, their spatial turnover is scale-dependent and appears to be largely driven by stochastic processes (dispersal and drift), although deterministic factors (temperature and organic input) are also important. Our findings enhance our mechanistic understanding of the global diversity and biogeography of activated sludge bacterial communities within a theoretical ecology framework and have important implications for microbial ecology and wastewater treatment processes.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The sample metadata are available in Supplementary Table 1. Sequences are available from the NCBI Sequence Read Archive with accession number PRJNA509305. OTU tables and representative sequences of the OTUs are available on the GWMC website (http://gwmc.ou.edu/data-disclose.html).

Code availability

R codes on the statistical analyses are available at https://github.com/Linwei-Wu/Global-bacterial-diversity-in-WWTPs.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Torsvik, V., Øvreås, L. & Thingstad, T. F. Prokaryotic diversity—magnitude, dynamics, and controlling factors. Science 296, 1064–1066 (2002).

  2. 2.

    Chase, J. M. & Myers, J. A. Disentangling the importance of ecological niches from stochastic processes across scales. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 2351–2363 (2011).

  3. 3.

    Ofiţeru, I. D. et al. Combined niche and neutral effects in a microbial wastewater treatment community. Proc. Natl Acad. Sci. USA 107, 15345–15350 (2010).

  4. 4.

    Zhou, J. et al. High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. mBio 6, e02288-14 (2015).

  5. 5.

    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).

  6. 6.

    Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. USA 103, 626–631 (2006).

  7. 7.

    Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).

  8. 8.

    National Academies of Sciences, Engineering, and Medicine. Microbiomes of the Built Environment: A Research Agenda for Indoor Microbiology, Human Health, and Buildings (National Academies Press, 2017).

  9. 9.

    Mateo-Sagasta, J., Raschid-Sally, L. & Thebo, A. in Wastewater (eds Drechsel, P., Qadir, M. & Wichelns, D.) 15–38 (Springer, 2015).

  10. 10.

    Gleick, P. H. in Encyclopedia of Climate and Weather (ed. Schneider, S. H.) 817–823 (Oxford Univ. Press, 1996).

  11. 11.

    van Loosdrecht, M. C. & Brdjanovic, D. Anticipating the next century of wastewater treatment. Science 344, 1452–1453 (2014).

  12. 12.

    Xia, S. et al. Bacterial community structure in geographically distributed biological wastewater treatment reactors. Environ. Sci. Technol. 44, 7391–7396 (2010).

  13. 13.

    Grant, S. B. et al. Taking the ‘waste’ out of ‘wastewater’ for human water security and ecosystem sustainability. Science 337, 681–686 (2012).

  14. 14.

    Saunders, A. M., Albertsen, M., Vollertsen, J. & Nielsen, P. H. The activated sludge ecosystem contains a core community of abundant organisms. ISME J. 10, 11 (2016).

  15. 15.

    Zhang, T., Shao, M.-F. & Ye, L. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J. 6, 1137–1147 (2012).

  16. 16.

    Wagner, M. & Loy, A. Bacterial community composition and function in sewage treatment systems. Curr. Opin. Biotechnol. 13, 218–227 (2002).

  17. 17.

    Morlon, H. et al. Spatial patterns of phylogenetic diversity. Ecol. Lett. 14, 141–149 (2011).

  18. 18.

    Shoemaker, W. R., Locey, K. J. & Lennon, J. T. A macroecological theory of microbial biodiversity. Nat. Ecol. Evol. 1, 107 (2017).

  19. 19.

    Locey, K. J. & Lennon, J. T. Scaling laws predict global microbial diversity. Proc. Natl Acad. Sci. USA 113, 5970–5975 (2016).

  20. 20.

    Curtis, T. P., Sloan, W. T. & Scannell, J. W. Estimating prokaryotic diversity and its limits. Proc. Natl Acad. Sci. USA 99, 10494–10499 (2002).

  21. 21.

    Ter Steege, H. et al. Hyperdominance in the Amazonian tree flora. Science 342, 1243092 (2013).

  22. 22.

    De Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).

  23. 23.

    Li, Y. et al. Dokdonella kunshanensis sp. nov., isolated from activated sludge, and emended description of the genus Dokdonella. Int. J. Syst. Evol. Microbiol. 63, 1519–1523 (2013).

  24. 24.

    Rosselló-Mora, R. A., Wagner, M., Amann, R. & Schleifer, K.-H. The abundance of Zoogloea ramigera in sewage treatment plants. Appl. Environ. Microbiol. 61, 702–707 (1995).

  25. 25.

    Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504 (2015).

  26. 26.

    Daims, H., Nielsen, J. L., Nielsen, P. H., Schleifer, K.-H. & Wagner, M. In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Appl. Environ. Microbiol. 67, 5273–5284 (2001).

  27. 27.

    Fisher, J. C., Levican, A., Figueras, M. J. & McLellan, S. L. Population dynamics and ecology of Arcobacter in sewage. Front. Microbiol. 5, 525 (2014).

  28. 28.

    Collado, L. & Figueras, M. J. Taxonomy, epidemiology, and clinical relevance of the genus Arcobacter. Clin. Microbiol. Rev. 24, 174–192 (2011).

  29. 29.

    Nielsen, P. H., Saunders, A. M., Hansen, A. A., Larsen, P. & Nielsen, J. L. Microbial communities involved in enhanced biological phosphorus removal from wastewater—a model system in environmental biotechnology. Curr. Opin. Biotechnol. 23, 452–459 (2012).

  30. 30.

    Lawson, C. E. et al. Rare taxa have potential to make metabolic contributions in enhanced biological phosphorus removal ecosystems. Environ. Microbiol. 17, 4979–4993 (2015).

  31. 31.

    Stokholm-Bjerregaard, M. et al. A critical assessment of the microorganisms proposed to be important to enhanced biological phosphorus removal in full-scale wastewater treatment systems. Front. Microbiol. 8, 718 (2017).

  32. 32.

    Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).

  33. 33.

    Martiny, J. B. H. et al. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4, 102–112 (2006).

  34. 34.

    Fuhrman, J. A. et al. A latitudinal diversity gradient in planktonic marine bacteria. Proc. Natl Acad. Sci. USA 105, 7774–7778 (2008).

  35. 35.

    Zhou, J. et al. Temperature mediates continental-scale diversity of microbes in forest soils. Nat. Commun. 7, 1208 (2016).

  36. 36.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

  37. 37.

    Martiny, J. B., Eisen, J. A., Penn, K., Allison, S. D. & Horner-Devine, M. C. Drivers of bacterial beta-diversity depend on spatial scale. Proc. Natl Acad. Sci. USA 108, 7850–7854 (2011).

  38. 38.

    Zhou, J. et al. Stochastic assembly leads to alternative communities with distinct functions in a bioreactor microbial community. mBio 4, e00584-12 (2013).

  39. 39.

    Knights, D. et al. Bayesian community-wide culture-independent microbial source tracking. Nat. Methods 8, 761–763 (2011).

  40. 40.

    Zhou, J. & Ning, D. Stochastic community assembly: does it matter in microbial ecology? Microbiol. Mol. Biol. Rev. 81, e00002–e00017 (2017).

  41. 41.

    Zhou, J. et al. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc. Natl Acad. Sci. USA 111, E836–E845 (2014).

  42. 42.

    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105 (2012).

  43. 43.

    Krause, S. et al. Trait-based approaches for understanding microbial biodiversity and ecosystem functioning. Front. Microbiol. 5, 251 (2014).

  44. 44.

    Bier, R. L. et al. Linking microbial community structure and microbial processes: an empirical and conceptual overview. FEMS Microbiol. Ecol. 91, fiv113 (2015).

  45. 45.

    Wells, G. F. et al. Ammonia-oxidizing communities in a highly aerated full-scale activated sludge bioreactor: betaproteobacterial dynamics and low relative abundance of Crenarchaea. Environ. Microbiol. 11, 2310–2328 (2009).

  46. 46.

    Karkman, A., Mattila, K., Tamminen, M. & Virta, M. Cold temperature decreases bacterial species richness in nitrogen-removing bioreactors treating inorganic mine waters. Biotechnol. Bioeng. 108, 2876–2883 (2011).

  47. 47.

    Griffin, J. S. & Wells, G. F. Regional synchrony in full-scale activated sludge bioreactors due to deterministic microbial community assembly. ISME J. 11, 500–511 (2017).

  48. 48.

    Tilman, D. Resource Competition and Community Structure (Princeton Univ. Press, 1982).

  49. 49.

    Wu, L. et al. Microbial functional trait of rRNA operon copy numbers increases with organic levels in anaerobic digesters. ISME J. 11, 2874–2878 (2017).

  50. 50.

    Pedrós-Alió, C. & Manrubia, S. The vast unknown microbial biosphere. Proc. Natl Acad. Sci. USA 113, 6585–6587 (2016).

  51. 51.

    Zhou, J. et al. Random sampling process leads to overestimation of β-diversity of microbial communities. mBio 4, e00324 (2013).

  52. 52.

    Zhou, J. et al. Reproducibility and quantitation of amplicon sequencing-based detection. ISME J. 5, 1303–1313 (2011).

  53. 53.

    Sinha, R. et al. Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium. Nat. Biotechnol. 35, 1077 (2017).

  54. 54.

    Ju, F. & Zhang, T. Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant. ISME J. 9, 683–695 (2015).

  55. 55.

    Xia, Yu. Diversity and Temporal Assembly Patterns of Microbial Communities in Municipal Wastewater Treatment Systems. PhD thesis, Univ. Tsinghua, Beijing, China (2016).

  56. 56.

    Buttigieg, P. L., Morrison, N., Smith, B., Mungall, C. J. & Lewis, S. E. The environment ontology: contextualising biological and biomedical entities. J. Biomed. Semantics 4, 43 (2013).

  57. 57.

    Yilmaz, P. et al. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat. Biotechnol. 29, 415–420 (2011).

  58. 58.

    Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sc. 4, 439–473 (2007).

  59. 59.

    Berube, A., Leal Trujillo, J., Ran, T. & Parilla, J. Global Metro Monitor (Brookings, 2015); https://www.brookings.edu/research/global-metro-monitor/

  60. 60.

    Wu, L. et al. Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis. BMC Microbiol. 15, 125 (2015).

  61. 61.

    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2011).

  62. 62.

    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).

  63. 63.

    Wen, C. et al. Evaluation of the reproducibility of amplicon sequencing with Illumina MiSeq platform. PLoS ONE 12, e0176716 (2017).

  64. 64.

    Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

  65. 65.

    McLaren, M. R. & Callahan, B. J. In nature, there is only diversity. mBio 9, e02149-17 (2018).

  66. 66.

    Sievers, F. et al. Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

  67. 67.

    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

  68. 68.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

  69. 69.

    McIlroy, S. J. et al. MiDAS 2.0: an ecosystem-specific taxonomy and online database for the organisms of wastewater treatment systems expanded for anaerobic digester groups. Database 2017, bax016 (2017).

  70. 70.

    Delgado-Baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. Science 359, 320–325 (2018).

  71. 71.

    Stoddard, S. F., Smith, B. J., Hein, R., Roller, B. R. & Schmidt, T. M. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res. 46, D593–D598 (2014).

  72. 72.

    McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610 (2012).

  73. 73.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).

  74. 74.

    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

  75. 75.

    AQUASTAT. FAO Gobal Information System on Water and Agriculture. Wastewater Section (FAO, 2014); http://www.fao.org/nr/water/aquastat/wastewater/index.stm

  76. 76.

    Sato, T., Qadir, M., Yamamoto, S., Endo, T. & Zahoor, A. Global, regional, and country level need for data on wastewater generation, treatment, and use. Agri. Water Manag. 130, 1–13 (2013).

  77. 77.

    Foladori, P., Bruni, L., Tamburini, S. & Ziglio, G. Direct quantification of bacterial biomass in influent, effluent and activated sludge of wastewater treatment plants by using flow cytometry. Water Res. 44, 3807–3818 (2010).

  78. 78.

    The Sources and Solutions: Wastewater (United States Environmental Protection Agency, 2018).

  79. 79.

    Chan, W. Wastewater: Good To The Last Drop (China Water Risk, 2017); http://chinawaterrisk.org/resources/analysis-reviews/wastewater-good-to-the-last-drop/

  80. 80.

    Hanski, I. Dynamics of regional distribution: the core and satellite species hypothesis. Oikos 38, 210–221 (1982).

  81. 81.

    Galand, P. E., Casamayor, E. O., Kirchman, D. L. & Lovejoy, C. Ecology of the rare microbial biosphere of the Arctic Ocean. Proc. Natl Acad. Sci. USA 106, 22427–22432 (2009).

  82. 82.

    Székely, A. J. & Langenheder, S. The importance of species sorting differs between habitat generalists and specialists in bacterial communities. FEMS Microbiol. Ecol. 87, 102–112 (2014).

  83. 83.

    Cheng, J. et al. Discordant temporal development of bacterial phyla and the emergence of core in the fecal microbiota of young children. ISME J. 10, 1002 (2016).

  84. 84.

    Ju, F. & Zhang, T. Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant. ISME J. 9, 683–695 (2015).

  85. 85.

    Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).

  86. 86.

    Oksanen, J. et al. vegan: Community Ecology Package. R version 2 (2013).

  87. 87.

    Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).

  88. 88.

    Chen, J. GUniFrac: Generalized UniFrac distances. R version 1 (2012).

  89. 89.

    Guo, X. et al. Climate warming leads to divergent succession of grassland microbial communities. Nat. Clim. Change 8, 813 (2018).

  90. 90.

    Chase, J. M., Kraft, N. J., Smith, K. G., Vellend, M. & Inouye, B. D. Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere 2, art24 (2011).

  91. 91.

    Stegen, J. C. et al. Quantifying community assembly processes and identifying features that impose them. ISME J. 7, 2069–2079 (2013).

  92. 92.

    Kembel, S. W. Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecol. Lett. 12, 949–960 (2009).

  93. 93.

    Legendre, P., Lapointe, F. J. & Casgrain, P. Modeling brain evolution from behavior: a permutational regression approach. Evolution 48, 1487–1499 (1994).

  94. 94.

    Grace, J. B. & Bollen, K. A. Representing general theoretical concepts in structural equation models: the role of composite variables. Environ. Ecol. Stat. 15, 191–213 (2008).

  95. 95.

    Rosseel, Y. Lavaan: an R package for structural equation modeling and more. Version 0.5–12 (BETA). J. Stat. Soft. 48, 1–36 (2012).

  96. 96.

    Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).

Download references


The authors thank T. Allen, A. Al-Omari, R. Bart, D. Crowley, G. Harwood, T. Hensley, S.-J. Huitric, M. M. L. Martins, A. Mena, B. Pathak, S. Pereira, D. E. Sauble, M. Taylor, P. Truong, D. VanderSchuur, A. Vieira and D. Zambrano for helping with sampling and metadata collection. This work was supported by the Tsinghua University Initiative Scientific Research Program (No. 20161080112), the National Scientific Foundation in China (51678335), the State Key Joint Laboratory of Environmental Simulation and Pollution Control (18L02ESPC) in China, and the Office of the Vice President for Research at the University of Oklahoma. Lin.W. and B.Z. were generously supported by the China Scholarship Council (CSC). J.Z. (jzhou@ou.edu) and D.N. (ningdaliang@ou.edu) serve as GWMC contacts.

Author information

Author notes

  1. These authors contributed equally: Linwei Wu, Daliang Ning, Bing Zhang.

  2. A full list of Global Water Microbiome Consortium members appears at the end of the paper.


  1. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China

    • Linwei Wu
    • , Daliang Ning
    • , Bing Zhang
    • , Xiaoyu Shan
    • , Qiuting Zhang
    • , Yunfeng Yang
    • , Daliang Ning
    • , Xiaoyu Shan
    • , Linwei Wu
    • , Yunfeng Yang
    • , Haowei Yue
    • , Bing Zhang
    • , Qiuting Zhang
    • , Jizhong Zhou
    • , Xianghua Wen
    • , Xianghua Wen
    •  & Jizhong Zhou
  2. Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA

    • Linwei Wu
    • , Daliang Ning
    • , Bing Zhang
    • , Ping Zhang
    • , Joy D. Van Nostrand
    • , Naijia Xiao
    • , Ya Zhang
    • , Lauren Hale
    • , Daliang Ning
    • , Renmao Tian
    • , Joy D. Van Nostrand
    • , Linwei Wu
    • , Liyou Wu
    • , Naijia Xiao
    • , Bing Zhang
    • , Ping Zhang
    • , Ya Zhang
    • , Jizhong Zhou
    •  & Jizhong Zhou
  3. Consolidated Core Laboratory, University of Oklahoma, Norman, OK, USA

    • Daliang Ning
    • , Naijia Xiao
    • , Daliang Ning
    •  & Naijia Xiao
  4. College of Resource and Environment Southwest University, Chongqing, China

    • Yong Li
    •  & Yong Li
  5. Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA

    • Ping Zhang
    •  & Ping Zhang
  6. School of Engineering, Newcastle University, Newcastle upon Tyne, UK

    • Mathew Brown
    • , Matthew Brown
    •  & Thomas P. Curtis
  7. School of Environment, Northeastern Normal University, Changchun, China

    • Zhenxin Li
    •  & Zhenxin Li
  8. Department of Energy, Environmental and Chemical Engineering, Washington University in St Louis, St Louis, MO, USA

    • Fangqiong Ling
  9. Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network ‘Chemistry meets Microbiology’, University of Vienna, Vienna, Austria

    • Julia Vierheilig
    • , Julia Vierheilig
    • , Michael Wagner
    •  & Michael Wagner
  10. Karl Landsteiner University of Health Sciences, Division of Water Quality and Health, Krems, Austria and Interuniversity Cooperation Centre for Water and Health, Krems, Austria

    • Julia Vierheilig
    •  & Julia Vierheilig
  11. Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA

    • George F. Wells
    •  & George F. Wells
  12. Institute for Marine Science and Technology, Shandong University, Qingdao, China

    • Ye Deng
    • , Qichao Tu
    • , Ye Deng
    •  & Qichao Tu
  13. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China

    • Ye Deng
    • , Aijie Wang
    •  & Aijie Wang
  14. Environmental Biotechnology Laboratory, The University of Hong Kong, Hong Kong, China

    • Tong Zhang
    •  & Tong Zhang
  15. Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China

    • Zhili He
    •  & Zhili He
  16. Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China

    • Zhili He
    •  & Zhili He
  17. Advanced Water Management Centre, The University of Queensland, Brisbane, Queensland, Australia

    • Miriam Agullo-Barcelo
    • , Philip Bond
    • , Jurg Keller
    •  & Jurg Keller
  18. Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark

    • Per H. Nielsen
    •  & Per H. Nielsen
  19. Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA

    • Pedro J. J. Alvarez
    • , Mengyan Li
    •  & Pedro J. J. Alvarez
  20. Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA

    • Craig S. Criddle
    • , Richard G. Luthy
    • , Sung-Geun Woo
    •  & Craig S. Criddle
  21. Center for Microbial Ecology, Michigan State University, East Lansing, MI, USA

    • James M. Tiedje
    •  & James M. Tiedje
  22. Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN, USA

    • Si Chen
    • , Qiang He
    •  & Qiang He
  23. Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, TN, USA

    • Qiang He
    •  & Qiang He
  24. Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA

    • David A. Stahl
    •  & David A. Stahl
  25. Department of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, CA, USA

    • Lisa Alvarez-Cohen
    •  & Lisa Alvarez-Cohen
  26. Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

    • Lisa Alvarez-Cohen
    • , Lisa Alvarez-Cohen
    •  & Jizhong Zhou
  27. Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA

    • Prathap Parameswaran
    • , Bruce E. Rittmann
    • , Michelle Young
    •  & Bruce E. Rittmann
  28. Environmental Microbiology and Biotechnology Laboratory, Engineering School of Environmental and Natural Resources, Engineering Faculty, Universidad del Valle–Sede Meléndez, Cali, Colombia

    • Dany Acevedo
    •  & Janeth Sanabria Gómez
  29. Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA

    • Gary L. Andersen
  30. Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

    • Gary L. Andersen
  31. Universidade Federal de Minas Gerais, Departamento de Engenharia Sanitária e Ambiental, Belo Horizonte, Brazil

    • Juliana Calabria de Araujo
    • , Cintia Dutra Leal
    •  & Jizhong Zhou
  32. Department of Environmental Health Sciences, The University of Michigan, Ann Arbor, MI, USA

    • Kevin Boehnke
    • , Rebecca K. Brewster
    •  & Chuanwu Xi
  33. Hampton Roads Sanitation District (HRSD), Virginia Beach, VA, USA

    • Charles B. Bott
    •  & Amanda Ford
  34. Microbial Ecology Laboratory, Microbial Biochemistry and Genomics Department, Biological Research Institute “Clemente Estable”, Montevideo, Uruguay

    • Patricia Bovio
    • , Angela Cabezas
    • , Claudia Etchebehere
    •  & Thomas P. Curtis
  35. Institute of Water and Wastewater Technology, Durban University of Technology, Durban, South Africa

    • Faizal Bux
    •  & Sheena Kumari
  36. Aix-Marseille University CNRS IRD, MIO UM110 Mediterranean Institute of Oceanography, Marseille, France

    • Léa Cabrol
  37. Escuela de Ingenieria Bioquimica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile

    • Léa Cabrol
  38. Microbial Community Engineering Laboratory, Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, Québec, Canada

    • Dominic Frigon
    •  & Shameem Jauffur
  39. Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA

    • James S. Griffin
  40. School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA

    • April Z. Gu
  41. Vatten and Miljö i Väst AB (VIVAB), Falkenberg, Sweden

    • Moshe Habagil
    •  & Alexander Keucken
  42. Norman Water Reclamation Facility, Norman, OK, USA

    • Steven D. Hardeman
  43. Golden Heart Utilities, Fairbanks, AK, USA

    • Marc Harmon
  44. Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe, Germany

    • Harald Horn
    •  & Stephanie West
  45. Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO, USA

    • Zhiqiang Hu
  46. Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Québec, Canada

    • Shameem Jauffur
  47. Department of Environmental Microbiology, Eawag, Dübendorf, Switzerland

    • David R. Johnson
    •  & Deborah Patsch
  48. Water Resources Engineering, Faculty of Engineering, Lund University, Lund, Sweden

    • Alexander Keucken
  49. Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg

    • Laura A. Lebrun
    •  & Paul Wilmes
  50. Department of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea

    • Jangho Lee
    • , Minjoo Lee
    •  & Joonhong Park
  51. Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, Singapore

    • Zarraz M. P. Lee
    •  & Yu Liu
  52. Department of Civil Engineering, University of Nebraska, Lincoln, NE, USA

    • Xu Li
    •  & Amin Mohebbi
  53. Infrastructure and Environment Research Division, School of Engineering, University of Glasgow, Glasgow, UK

    • Fangqiong Ling
    •  & William T. Sloan
  54. School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore

    • Yu Liu
  55. Plant Biotechnology Program, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil

    • Leda C. Mendonça-Hagler
  56. Federal University of Ceará, UFC, Ceará, Brazil

    • Francisca Gleire Rodriguez de Menezes
    •  & Oscarina Viana de Sousa
  57. University of Tennessee, Center for Environmental Biotechnology, Knoxville, TN, USA

    • Arthur J. Meyers
  58. Department of Civil Engineering, Construction Management and Environmental Engineering, Northern Arizona University, Flagstaff, AZ, USA

    • Amin Mohebbi
  59. UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal

    • Adrian Oehmen
  60. CSIRO Land and Water, Ecosciences Precinct, Dutton Park, Queensland, Australia

    • Andrew Palmer
    • , Jatinder Sidhu
    •  & Kylie Smith
  61. Departamento de Química, Universidade de São Paulo, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto—FFCLRP, Ribeirão Preto, Brazil

    • Valeria Reginatto
  62. Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, USA

    • Francis L. de los Reyes III
    •  & Joseph E. Weaver
  63. Grupo de Investigación en Procesos Anaerobios, Instituto de Ingeniería, Universidad Nacional Autónoma de México, México, Mexico

    • Adalberto Noyola Robles
    •  & Daniel De los Cobos Vasconcelos
  64. CNR-IRSA, National Research Council, Water Research Institute, Rome, Italy

    • Simona Rossetti
  65. Tryon Creek and Columbia Blvd Wastewater Treatment Plants, Bureau of Environmental Services, City of Portland, OR, USA

    • Kyle Stephens
  66. Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA

    • Nicholas B. Tooker
  67. Scion Research, Christchurch, New Zealand

    • Steve Wakelin
  68. School of Engineering, University of Guelph, Guelph, Ontario, Canada

    • Bei Wang
    •  & Hongde Zhou
  69. Department of Environmental Engineering, National Cheng Kung University, Tainan City, China

    • Jer-Horng Wu
  70. State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China

    • Meiying Xu
  71. Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI, USA

    • Tao Yan
    •  & Qian Zhang
  72. State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China

    • Min Yang
    •  & Yu Zhang
  73. Department of Civil Engineering, University of Arkansas, Fayetteville, AR, USA

    • Wen Zhang


  1. Search for Linwei Wu in:

  2. Search for Daliang Ning in:

  3. Search for Bing Zhang in:

  4. Search for Yong Li in:

  5. Search for Ping Zhang in:

  6. Search for Xiaoyu Shan in:

  7. Search for Qiuting Zhang in:

  8. Search for Mathew Brown in:

  9. Search for Zhenxin Li in:

  10. Search for Joy D. Van Nostrand in:

  11. Search for Fangqiong Ling in:

  12. Search for Naijia Xiao in:

  13. Search for Ya Zhang in:

  14. Search for Julia Vierheilig in:

  15. Search for George F. Wells in:

  16. Search for Yunfeng Yang in:

  17. Search for Ye Deng in:

  18. Search for Qichao Tu in:

  19. Search for Aijie Wang in:

  20. Search for Tong Zhang in:

  21. Search for Zhili He in:

  22. Search for Jurg Keller in:

  23. Search for Per H. Nielsen in:

  24. Search for Pedro J. J. Alvarez in:

  25. Search for Craig S. Criddle in:

  26. Search for Michael Wagner in:

  27. Search for James M. Tiedje in:

  28. Search for Qiang He in:

  29. Search for Thomas P. Curtis in:

  30. Search for David A. Stahl in:

  31. Search for Lisa Alvarez-Cohen in:

  32. Search for Bruce E. Rittmann in:

  33. Search for Xianghua Wen in:

  34. Search for Jizhong Zhou in:


  1. Global Water Microbiome Consortium


All authors contributed experimental assistance and intellectual input to this study. The original concept was conceived by J.Z. Experimental strategies and sampling design were developed by J.Z., X.W., T.P.C., Q.H., Z. He. and D.N. Sample collections were coordinated by Q.H., D.N., X.W., T.P.C., B.Z., M.B., G.F.W., J.Z. and other GWMC members. J.D.V.N and D.N. managed shipping. Y. Li., B.Z., ZX.L., D.N. and some GWMC members (F.B., S.K., J.V., A.N.R., D.D.C.V., C.E., L.C., J.C.A., C.D.L., L.C.M-H., A.C., P. Bovio. and D.A.) did DNA extraction. P.Z. performed DNA sequencing with the help from Liy.W. Data analyses were performed by Lin.W., D.N., J.Z., B.Z., X.S., Q.Z., F.L., N.X. and R.T. with help from Y.D., Q.T., T.Z., Ya.Z and A.W. The manuscript was written by Lin.W., J.Z. and D.N. with the help from B.E.R., L.A.-C., M.W., C.S.C., D.A.S., G.F.W., J.M.T., P.J.J.A., J.K., J.V., P.H.N., R.G.L., X.W., Z. He. and Y.Y.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Qiang He or Thomas P. Curtis or Xianghua Wen or Jizhong Zhou.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–7, Supplementary Table 2, Supplementary Tables 4–10, Supplementary Table 13 and Supplementary References.

  2. Reporting Summary

  3. Supplementary Table 1

    Summary of metadata.

  4. Supplementary Table 3

    OTUs identified as core community at the global scale or within each continent.

  5. Supplementary Table 11

    Diversity of Nitrosomonas species across WWTPs.

  6. Supplementary Table 12

    The diversity of Candidatus Accumulimonas, Candidatus Accumulibacter and Tetrasphaera species across WWTPs.

About this article

Publication history