Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

ARCHAEAL EVOLUTION

Sediment, methane and energy

Three recent metagenomic studies analyse methanogenesis-related genes in previously uncharacterized, sediment-inhabiting archaeal lineages. They elucidate the metabolic capacity encoded in the genomes of these lineages, yet how these organisms harness energy is still a mystery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proposed energy metabolisms in MAGs and cultured K. cryptophilum.

References

  1. Wang, Y., Wegener, G., Hou, J., Wang, F. & Xiao, X. Nat. Microbiol. https://doi.org/10.1038/s41564-019-0364-2 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Borrel, G. et al. Nat. Microbiol. https://doi.org/10.1038/s41564-019-0363-3 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  3. McKay, L. J. et al. Nat. Microbiol. https://doi.org/10.1038/s41564-019-0362-4 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Thauer, R. K., Kaster, A. K., Seedorf, H., Buckel, W. & Hedderich, R. Nat. Rev. Microbiol. 6, 579–591 (2008).

    Article  CAS  Google Scholar 

  5. Milucka, J. et al. Nature 491, 541–546 (2012).

    Article  CAS  Google Scholar 

  6. Laso-Pérez, R. et al. Nature 539, 396–401 (2016).

    Article  Google Scholar 

  7. Elkins, J. G. et al. Proc. Natl Acad. Sci. USA 105, 8102–8107 (2008).

    Article  CAS  Google Scholar 

  8. Weisse, R. H., Faust, A., Schmidt, M., Schönheit, P. & Scheidig, A. J. Proc. Natl Acad. Sci. USA 113, E519–E528 (2016).

    Article  CAS  Google Scholar 

  9. Schönheit, P., Buckel, W. & Martin, W. F. Trends Microbiol. 24, 12–25 (2016).

    Article  Google Scholar 

  10. Varma, S. J., Muchowska, K. B., Chatelain, P. & Moran, J. Nat. Ecol. Evol. 2, 1019–1024 (2018).

    Article  Google Scholar 

  11. Dell’Anno, A. & Danovaro, R. Science 309, 2179–2179 (2005).

    Article  Google Scholar 

  12. Torti, A., Lever, M. A. & Jørgensen, B. B. Mar. Genom. 24, 185–196 (2015).

    Article  Google Scholar 

  13. Orsi, W. D., Edgcomb, V. P., Christman, G. D. & Biddle, J. F. Nature 499, 205–208 (2013).

    Article  CAS  Google Scholar 

  14. Baross, J. A. Nature 564, 42–43 (2018).

    Article  CAS  Google Scholar 

  15. Weiss, M. C. et al. Nat. Microbiol. 1, 16116 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joana C. Xavier or William F. Martin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xavier, J.C., Martin, W.F. Sediment, methane and energy. Nat Microbiol 4, 547–549 (2019). https://doi.org/10.1038/s41564-019-0417-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-019-0417-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing