Viral complementation of immunodeficiency confers protection against enteric pathogens via interferon-λ


Commensal microbes profoundly impact host immunity to enteric viral infections1. We have shown that the bacterial microbiota and host antiviral cytokine interferon-λ (IFN-λ) determine the persistence of murine norovirus in the gut2,3. However, the effects of the virome in modulating enteric infections remain unexplored. Here, we report that murine astrovirus can complement primary immunodeficiency to protect against murine norovirus and rotavirus infections. Protection against infection was horizontally transferable between immunocompromised mouse strains by co-housing and fecal transplantation. Furthermore, protection against enteric pathogens corresponded with the presence of a specific strain of murine astrovirus in the gut, and this complementation of immunodeficiency required IFN-λ signalling in gut epithelial cells. Our study demonstrates that elements of the virome can protect against enteric pathogens in an immunodeficient host.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Specific immunodeficient mouse strains are protected against murine norovirus and rotavirus infection.
Fig. 2: Antiviral protection is transmissible to immunodeficient, but not immunocompetent, mice.
Fig. 3: Murine astrovirus STL5 confers protection against murine norovirus infection.
Fig. 4: Intestinal IFN-λ signalling is essential for protection against MNoV in immunocompromised mice.

Code availability

The code used for constructing the phylogenetic tree is available at GitHub (

Data availability

The data from this study are available in the main paper and Supplementary Information. Sequencing data have been uploaded to the European Nucleotide Archive with accession number PRJEB31115.


  1. 1.

    Pfeiffer, J. K. & Virgin, H. W. Transkingdom control of viral infection and immunity in the mammalian intestine. Science 351, aad5872 (2016).

  2. 2.

    Baldridge, M. T. et al. Commensal microbes and interferon-lambda determine persistence of enteric murine norovirus infection. Science 347, 266–269 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    Nice, T. J. et al. Interferon-lambda cures persistent murine norovirus infection in the absence of adaptive immunity. Science 347, 269–273 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    Netea, M. G. et al. Trained immunity: a program of innate immune memory in health and disease. Science 352, aaf1098 (2016).

    Article  Google Scholar 

  5. 5.

    Virgin, H. W. The virome in mammalian physiology and disease. Cell 157, 142–150 (2014).

    CAS  Article  Google Scholar 

  6. 6.

    Rosshart, S. P. et al. Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell 171, 1015–1028 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Beura, L. K. et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 532, 512–516 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    Kaufmann, E. et al. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell 172, 176–190 (2018).

    CAS  Article  Google Scholar 

  9. 9.

    Kleinnijenhuis, J. et al. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc. Natl Acad. Sci. USA 109, 17537–17542 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    Arts, R. J. W. et al. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe 23, 89–100 (2018).

    CAS  Article  Google Scholar 

  11. 11.

    Barton, E. S. et al. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447, 326–329 (2007).

    CAS  Article  Google Scholar 

  12. 12.

    Sun, J. C., Beilke, J. N. & Lanier, L. L. Adaptive immune features of natural killer cells. Nature 457, 557–561 (2009).

    CAS  Article  Google Scholar 

  13. 13.

    Chudnovskiy, A. et al. Host–protozoan interactions protect from mucosal infections through activation of the inflammasome. Cell 167, 444–456 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    Nice, T. J., Strong, D. W., McCune, B. T., Pohl, C. S. & Virgin, H. W. A single-amino-acid change in murine norovirus NS1/2 is sufficient for colonic tropism and persistence. J. Virol. 87, 327–334 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    Thackray, L. B. et al. Murine noroviruses comprising a single genogroup exhibit biological diversity despite limited sequence divergence. J. Virol. 81, 10460–10473 (2007).

    CAS  Article  Google Scholar 

  16. 16.

    Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877 (1992).

    CAS  Article  Google Scholar 

  17. 17.

    Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867 (1992).

    CAS  Article  Google Scholar 

  18. 18.

    Cao, X. et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity 2, 223–238 (1995).

    CAS  Article  Google Scholar 

  19. 19.

    Chachu, K. A., LoBue, A. D., Strong, D. W., Baric, R. S. & Virgin, H. W. Immune mechanisms responsible for vaccination against and clearance of mucosal and lymphatic norovirus infection. PLoS Pathog. 4, e1000236 (2008).

    Article  Google Scholar 

  20. 20.

    Chachu, K. A. et al. Antibody is critical for the clearance of murine norovirus infection. J. Virol. 82, 6610–6617 (2008).

    CAS  Article  Google Scholar 

  21. 21.

    Zhang, B. et al. Prevention and cure of rotavirus infection via TLR5/NLRC4-mediated production of IL-22 and IL-18. Science 346, 861–865 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    Uchiyama, R., Chassaing, B., Zhang, B. & Gewirtz, A. T. Antibiotic treatment suppresses rotavirus infection and enhances specific humoral immunity. J. Infect. Dis. 210, 171–182 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    Galvez, E. J. C., Iljazovic, A., Gronow, A., Flavell, R. & Strowig, T. Shaping of intestinal microbiota in Nlrp6- and Rag2-deficient mice depends on community structure. Cell Rep. 21, 3914–3926 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    Handley, S. A. et al. SIV infection-mediated changes in gastrointestinal bacterial microbiome and virome are associated with immunodeficiency and prevented by vaccination. Cell Host Microbe 19, 323–335 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    Norman, J. M., Handley, S. A. & Virgin, H. W. Kingdom-agnostic metagenomics and the importance of complete characterization of enteric microbial communities. Gastroenterology 146, 1459–1469 (2014).

    CAS  Article  Google Scholar 

  26. 26.

    Zhao, G. et al. VirusSeeker, a computational pipeline for virus discovery and virome composition analysis. Virology 503, 21–30 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    Yokoyama, C. C. et al. Adaptive immunity restricts replication of novel murine astroviruses. J. Virol. 86, 12262–12270 (2012).

    CAS  Article  Google Scholar 

  28. 28.

    Lee, S. et al. Norovirus cell tropism is determined by combinatorial action of a viral non-structural protein and host cytokine. Cell Host Microbe 22, 449–459 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    Baldridge, M. T. et al. Expression of Ifnlr1 on intestinal epithelial cells is critical to the antiviral effects of IFN-lambda against norovirus and reovirus. J. Virol. 91, e02079-16 (2017).

    Article  Google Scholar 

  30. 30.

    Shultz, L. D., Brehm, M. A., Garcia-Martinez, J. V. & Greiner, D. L. Humanized mice for immune system investigation: progress, promise and challenges. Nat. Rev. Immunol. 12, 786–798 (2012).

    CAS  Article  Google Scholar 

  31. 31.

    Strong, D. W., Thackray, L. B., Smith, T. J. & Virgin, H. W. Protruding domain of capsid protein is necessary and sufficient to determine murine norovirus replication and pathogenesis in vivo. J. Virol. 86, 2950–2958 (2012).

    CAS  Article  Google Scholar 

  32. 32.

    Orchard, R. C. et al. Discovery of a proteinaceous cellular receptor for a norovirus. Science 353, 933–936 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    Feng, N., Burns, J. W., Bracy, L. & Greenberg, H. B. Comparison of mucosal and systemic humoral immune responses and subsequent protection in mice orally inoculated with a homologous or a heterologous rotavirus. J. Virol. 68, 7766–7773 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Moon, C. et al. Vertically transmitted faecal IgA levels determine extra-chromosomal phenotypic variation. Nature 521, 90–93 (2015).

    CAS  Article  Google Scholar 

  35. 35.

    Baert, L. et al. Detection of murine norovirus 1 by using plaque assay, transfection assay, and real-time reverse transcription-PCR before and after heat exposure. Appli. Environ. Microbiol. 74, 543–546 (2008).

    CAS  Article  Google Scholar 

  36. 36.

    Baym, M. et al. Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS ONE 10, e0128036 (2015).

    Article  Google Scholar 

  37. 37.

    Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).

    Article  Google Scholar 

  38. 38.

    Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

    CAS  Article  Google Scholar 

  39. 39.

    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2011).

    CAS  Article  Google Scholar 

  40. 40.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    CAS  Article  Google Scholar 

  41. 41.

    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    CAS  PubMed  Google Scholar 

  42. 42.

    McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012).

    CAS  Article  Google Scholar 

  43. 43.

    Vazquez-Baeza, Y., Pirrung, M., Gonzalez, A. & Knight, R. EMPeror: a tool for visualizing high-throughput microbial community data. Gigascience 2, 16 (2013).

    Article  Google Scholar 

  44. 44.

    Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. GenBank. Nucleic Acids Res. 44, D67–D72 (2016).

    CAS  Article  Google Scholar 

  45. 45.

    Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).

    CAS  Article  Google Scholar 

  46. 46.

    Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    CAS  Article  Google Scholar 

  47. 47.

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS  Article  Google Scholar 

Download references


We acknowledge all members of the Baldridge laboratory for helpful discussions. We also thank J. Hoisington-Lopez for assistance with sequencing, D. Kreamalmeyer for animal care and breeding, the Washington University Pulmonary Morphology core facility for assistance with histology, and J. White and the Washington University Central Gnotobiotic Facility for assistance with germ-free mice. We are grateful to the Estes laboratory for providing murine rotavirus. H.I. was supported by the Children’s Discovery Institute of Washington University and a St Louis Children’s Hospital Postdoctoral Research grant (MI-F-2018-712). S.L. was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (NRF-2016R1A6A3A03012352). A.O. was funded by the Pediatric Infectious Diseases Society/St Jude Children’s Research Hospital Fellowship Program in Basic Research and NIH training grant T32AI106688. C.C.Y. was supported by NIH training grant T32AI007163. S.S.-C. was supported by ALSAC and NIH grant R03 AI126101-01. J.J.M. was supported by NIH grant K08 AR07091. M.T.B. was supported by NIH grants K22 AI127846, R01 AI127552, R01 AI139314 and R01 AI141478, Digestive Diseases Research Core Centers P30 DK052574, the Pew Biomedical Scholars Program and the Global Probiotics Council’s Young Investigator Grant for Probiotics Research.

Author information




H.I., S.L., T.A., M.S., S.T.P., M.L., T.-C.L., C.C.Y. and M.T.B. performed the experiments. H.I., S.L., T.A., A.O., G.Z., M.S., S.T.P., M.L., T.C.L., C.C.Y., B.S., R.R., S.S.-C., J.J.M. and M.T.B analysed the results. H.I., S.L., S.S.-C., J.J.M and M.T.B designed the project. H.I., S.L. and M.T.B. wrote the manuscript. All authors read and edited the manuscript. All reagents are available from M.T.B. under a material transfer agreement with Washington University.

Corresponding author

Correspondence to Megan T. Baldridge.

Ethics declarations

Competing interests

C.C.Y. and G.Z. hold a patent for detection of murine astrovirus. The authors declare no additional conflicts of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ingle, H., Lee, S., Ai, T. et al. Viral complementation of immunodeficiency confers protection against enteric pathogens via interferon-λ. Nat Microbiol 4, 1120–1128 (2019).

Download citation

Further reading