Gut anatomical properties and microbial functional assembly promote lignocellulose deconstruction and colony subsistence of a wood-feeding beetle


Beneficial microbial associations enhance the fitness of most living organisms, and wood-feeding insects offer some of the most striking examples of this. Odontotaenius disjunctus is a wood-feeding beetle that possesses a digestive tract with four main compartments, each of which contains well-differentiated microbial populations, suggesting that anatomical properties and separation of these compartments may enhance energy extraction from woody biomass. Here, using integrated chemical analyses, we demonstrate that lignocellulose deconstruction and fermentation occur sequentially across compartments, and that selection for microbial groups and their metabolic pathways is facilitated by gut anatomical features. Metaproteogenomics showed that higher oxygen concentration in the midgut drives lignocellulose depolymerization, while a thicker gut wall in the anterior hindgut reduces oxygen diffusion and favours hydrogen accumulation, facilitating fermentation, homoacetogenesis and nitrogen fixation. We demonstrate that depolymerization continues in the posterior hindgut, and that the beetle excretes an energy- and nutrient-rich product on which its offspring subsist and develop. Our results show that the establishment of beneficial microbial partners within a host requires both the acquisition of the microorganisms and the formation of specific habitats within the host to promote key microbial metabolic functions. Together, gut anatomical properties and microbial functional assembly enable lignocellulose deconstruction and colony subsistence on an extremely nutrient-poor diet.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Digestive tract of O. disjunctus.
Fig. 2: Wood biomass is transformed as it passes through the digestive tract of O. disjunctus.
Fig. 3: Distribution of the microbial genetic potential for lignocellulose degradation and its expression through the digestive tract of O. disjunctus.
Fig. 4: Schematic representation of the coverage and expression of microbial metabolic pathway distribution through the beetle gut from the metagenomic and metaproteomic analyses.
Fig. 5: Hydrogen and methane production, as well as nitrogen fixation, occur in the beetle’s digestive tract.
Fig. 6: Distribution of processes for the deconstruction and fermentation of lignocellulose in the digestive tract of O. disjunctus, and key microbial players.

Data availability

Metagenomic data are publicly available at the National Center for Biotechnology Information under the BioProject PRJNA510434. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD012200. Metabolomics data can be found at


  1. 1.

    Shapira, M. Gut microbiotas and host evolution: scaling up symbiosis. Trends Ecol. Evol. 31, 539–549 (2016).

    Article  Google Scholar 

  2. 2.

    Beran, F. & Gershenzon, J. Microbes matter: herbivore gut endosymbionts play a role in breakdown of host plant toxins. Environ. Microbiol. 18, 1306–1307 (2016).

    Article  Google Scholar 

  3. 3.

    Ceja-Navarro, J. A. et al. Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee.Nat. Commun. 6, 7618 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    Warnecke, F. et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450, 560–565 (2007).

    CAS  Article  Google Scholar 

  5. 5.

    Schmitt-Wagner, D. & Brune, A. Hydrogen profiles and localization of methanogenic activities in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl. Environ. Microbiol. 65, 4490–4496 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Lemke, T., van Alen, T., Hackstein, J. H. P. & Brune, A. Cross-epithelial hydrogen transfer from the midgut compartment drives methanogenesis in the hindgut of cockroaches. Appl. Environ. Microbiol. 67, 4657–4661 (2001).

    CAS  Article  Google Scholar 

  7. 7.

    Pester, M. & Brune, A. Hydrogen is the central free intermediate during lignocellulose degradation by termite gut symbionts. ISME J. 1, 551–565 (2007).

    CAS  Article  Google Scholar 

  8. 8.

    Kohler, T., Dietrich, C., Scheffrahn, R. H. & Brune, A. High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.). Appl. Environ. Microbiol. 78, 4691–4701 (2012).

    Article  Google Scholar 

  9. 9.

    Dietrich, C., Kohler, T. & Brune, A. The cockroach origin of the termite gut microbiota: patterns in bacterial community structure reflect major evolutionary events. Appl. Environ. Microbiol. 80, 2261–2269 (2014).

    Article  Google Scholar 

  10. 10.

    Ceja-Navarro, J. A. et al. Compartmentalized microbial composition, oxygen gradients and nitrogen fixation in the gut of Odontotaenius disjunctus. ISME J. 8, 6–18 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    Schuster, J. C. & Schuster, L. B. Social behavior in passalid beetles (Coleoptera: Passalidae): cooperative brood care. Florida Entomol. 68, 266–272 (1985).

    Article  Google Scholar 

  12. 12.

    Wicknick, J. A. & Miskelly, S. A. Behavioral interactions between non-cohabiting bess beetles, Odontotaenius disjunctus (Illiger) (Coleoptera: Passalidae). Coleopt. Bull. 63, 108–116 (2009).

    Article  Google Scholar 

  13. 13.

    Schuster, J. C. & Schuster, L. B. in The Evolution of Social Behavior in Insects and Arachnids (eds by Choe, J. C. & Crespi, B. J.) 260–269 (Cambridge Univ. Press, 1997).

  14. 14.

    Lindblad, I. Wood-inhabiting fungi on fallen logs of Norway spruce: relations to forest management and substrate quality. Nord. J. Bot. 18, 243–255 (1998).

    Article  Google Scholar 

  15. 15.

    Nardi, J. B. et al. Communities of microbes that inhabit the changing hindgut landscape of a subsocial beetle. Arthropod Struct. Dev. 35, 57–68 (2006).

    Article  Google Scholar 

  16. 16.

    Castillo, M. L. & Reyes-Castillo, P. in Tropical Biology and Conservation Management. Encyclopedia of Life Support Systems Vol. VII (eds Del Claro, K., Oliveira, P. S. & Rico-Gray, V.) 112–133 (2009).

  17. 17.

    Ulyshen, M. D. Wood decomposition as influenced by invertebrates.Biol. Rev. Camb. Phil. Soc. 91, 70–85 (2014).

    Article  Google Scholar 

  18. 18.

    Pearse, A. S., Patterson, M. T., Rankin, J. S. & Wharton, G. W. The ecology of Passalus cornutus Fabricius, a beetle which lives in rotting logs. Ecol. Monogr. 6, 455–490 (1936).

    Article  Google Scholar 

  19. 19.

    Urbina, H. & Blackwell, M. Multilocus phylogenetic study of the Scheffersomyces yeast clade and characterization of the N-terminal region of xylose reductase gene. PLoS ONE. 7, e39128 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    Lichtwardt, R. W., White, M. M., Cafaro, M. J. & Misra, J. K. Fungi associated with passalid beetles and their mites. Mycologia 91, 694–702 (1999).

    Article  Google Scholar 

  21. 21.

    Suh, S. O., Marshall, C. J., McHugh, J. V. & Blackwell, M. Wood ingestion by passalid beetles in the presence of xylose-fermenting gut yeasts. Mol. Ecol. 12, 3137–3145 (2003).

    Article  Google Scholar 

  22. 22.

    Zhang, N., Suh, S.-O. & Blackwell, M. Microorganisms in the gut of beetles: evidence from molecular cloning. J. Invertebr. Pathol. 84, 226–233 (2003).

    CAS  Article  Google Scholar 

  23. 23.

    Nguyen, N. H., Suh, S.-O., Marshall, C. J. & Blackwell, M. Morphological and ecological similarities: wood-boring beetles associated with novel xylose-fermenting yeasts, Spathaspora passalidarum gen. sp. nov. and Candida jeffriesii sp. nov. Mycol. Res. 110, 1232–1241 (2006).

    Article  Google Scholar 

  24. 24.

    Urbina, H., Schuster, J. & Blackwell, M. The gut of Guatemalan passalid beetles: a habitat colonized by cellobiose- and xylose-fermenting yeasts. Fungal Ecol. 6, 339–355 (2013).

    Article  Google Scholar 

  25. 25.

    Geib, S. M. et al. Lignin degradation in wood-feeding insects. Proc. Natl Acad. Sci. USA 105, 12932–12937 (2008).

    CAS  Article  Google Scholar 

  26. 26.

    De Gonzalo, G., Colpa, D. I., Habib, M. H. M. & Fraaije, M. W. Bacterial enzymes involved in lignin degradation. J. Biotechnol. 236, 110–119 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    Sabbadin, F. et al. An ancient family of lytic polysaccharide monooxygenases with roles in arthropod development and biomass digestion. Nat. Commun. 9, 756 (2018).

    Article  Google Scholar 

  29. 29.

    Cord-Ruwisch, R., Seitz, H.-J. & Conrad, R. The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch. Microbiol. 149, 350–357 (1988).

    CAS  Article  Google Scholar 

  30. 30.

    Hoehler, T. M., Alperin, M. J., Albert, D. B. & Martens, C. S. Thermodynamic control on hydrogen concentrations in anoxic sediments. Geochim. Cosmochim. Acta 62, 1745–1756 (1998).

    CAS  Article  Google Scholar 

  31. 31.

    Douglas, A. E. Multiorganismal insects: diversity and function of resident microorganisms. Annu. Rev. Entomol. 60, 17–34 (2014).

    Article  Google Scholar 

  32. 32.

    Tarmadi, D. et al. The effects of various lignocelluloses and lignins on physiological responses of a lower termite, Coptotermes formosanus. J. Wood Sci. 63, 464–472 (2017).

    CAS  Article  Google Scholar 

  33. 33.

    Zhou, J. et al. Diversity, roles, and biotechnological applications of symbiotic microorganisms in the gut of termite. Curr. Microbiol. (2018).

    Article  Google Scholar 

  34. 34.

    Brune, A. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 12, 168–180 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    Shabat, S. K. et al. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME J. 10, 2958–2972 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    Scully, E. D., Hoover, K., Carlson, J. E., Tien, M. & Geib, S. M. Midgut transcriptome profiling of Anoplophora glabripennis, a lignocellulose degrading cerambycid beetle. BMC Genomics 14, 850 (2013).

    Article  Google Scholar 

  37. 37.

    Abdul Rahman, N. et al. A molecular survey of Australian and North American termite genera indicates that vertical inheritance is the primary force shaping termite gut microbiomes. Microbiome 3, 5 (2015).

    Article  Google Scholar 

  38. 38.

    Zhou, M. et al. Assessment of microbiome changes after rumen transfaunation: implications on improving feed efficiency in beef cattle. Microbiome 6, 62 (2018).

    Article  Google Scholar 

  39. 39.

    Westneat, M. W. et al. Tracheal respiration in insects visualized with synchrotron X-ray imaging. Science 299, 558–560 (2003).

    CAS  Article  Google Scholar 

  40. 40.

    Jackson, H. B., Baum, K. A., Robert, T. & Cronin, J. T. Habitat-specific movement and edge-mediated behavior of the saproxylic insect Odontotaenius disjunctus (Coleoptera: Passalidae). Environ. Entomol. 38, 1411–1422 (2009).

    Article  Google Scholar 

  41. 41.

    King, A. & Fashing, N. Infanticidal behavior in the subsocial beetle Odontotaenius disjunctus (Illiger) (Coleoptera: Passalidae). J. Insect Behav. 20, 527–536 (2007).

    Article  Google Scholar 

  42. 42.

    Krause, J. B. & Ryan, M. T. The stages of development in the embryology of the horned passalus beetle, Popilius disjunctus Illiger. Ann. Entomol. Soc. Am. 46, 1–20 (1953).

    Article  Google Scholar 

  43. 43.

    R Core Development Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).

  44. 44.

    Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).

    CAS  Article  Google Scholar 

  45. 45.

    Boisvert, S., Raymond, F., Godzaridis, É., Laviolette, F. & Corbeil, J. Ray Meta: scalable de novo metagenome assembly and profiling. Genome. Biol. 13, R122 (2012).

  46. 46.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  Article  Google Scholar 

  47. 47.

    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  Google Scholar 

  48. 48.

    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).

    Article  Google Scholar 

  49. 49.

    Eddy, S. R. A probabilistic model of local sequence alignment that simplifies statistical significance estimation. PLoS Comput. Biol. 4, e1000069 (2008).

    Article  Google Scholar 

  50. 50.

    Kelly, R. T. et al. Chemically etched open tubular and monolithic emitters for nanoelectrospray ionization mass spectrometry. Anal. Chem. 78, 7796–7801 (2006).

    CAS  Article  Google Scholar 

  51. 51.

    Maiolica, A., Borsotti, D. & Rappsilber, J. Self-made frits for nanoscale columns in proteomics. Proteomics 5, 3847–3850 (2005).

    CAS  Article  Google Scholar 

  52. 52.

    Kim, Y.-M. et al. Diel metabolomics analysis of a hot spring chlorophototrophic microbial mat leads to new hypotheses of community member metabolisms.Front. Microbiol. 6, 209 (2015).

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Hiller, K. et al. Metabolitedetector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis. Anal. Chem. 81, 3429–3439 (2009).

    CAS  Article  Google Scholar 

  54. 54.

    Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).

    CAS  Article  Google Scholar 

  55. 55.

    Darling, A. E. et al. PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ. 2, e243 (2014).

    Article  Google Scholar 

  56. 56.

    Kerepesi, C., Bánky, D. & Grolmusz, V. AmphoraNet: the webserver implementation of the AMPHORA2 metagenomic workflow suite. Gene 533, 538–540 (2014).

    CAS  Article  Google Scholar 

Download references


This work was funded by the Department of Energy’s Genomic Science Program (grant SCW1039). Part of this work was performed at Lawrence Berkeley National Laboratory and Lawrence Livermore National Laboratory under United States Department of Energy contract numbers DE-AC02-05CH11231 and DE-AC52-07NA27344, respectively. A portion of this research was also performed under an Environmental Molecular Sciences Laboratory Science Theme Project (awarded to E.L.B.), which is a Department of Energy Office of Science User Facility sponsored by the Office of Biological and Environmental Research and operated under contract DE-AC05-76RL01830 (EMSL). DNA sequencing was performed at the Vincent J. Coates Genomics Sequencing Laboratory at the University of California Berkeley, supported by NIH S10 Instrumentation grants S10RR029668 and S10RR027303. We thank K. Burnum-Johnson for helpful discussion.

Author information




J.A.C.-N. and E.L.B. designed the experiments and wrote the manuscript. J.A.C.-N. and U.K. performed the bioinformatics and statistical analyses. A.A. and L.R. contributed with bioinformatics analyses. J.A.C.-N. performed the microelectrode work. M.B., J.A.C.-N. and M.E.C. generated the methane dynamics and methane fractionation data. Z.H. generated the infrared data. T.R.F. and T.D.B. generated the thermochemolysis data. J.N.A., M.S.L., R.A.W. and C.D.N. contributed with metaproteomics analyses. Y.-M.K. and R.A.W. generated the GC-MS data. P.N.R. generated the NMR data. M.B. provided the insect specimens and contributed with manuscript preparation. J.P.-R. contributed with manuscript preparation.

Corresponding author

Correspondence to Eoin L. Brodie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–5, Supplementary Tables 1–3 and legends for Supplementary Datasets.

Reporting Summary

Supplementary Dataset 1

Fasta file containing all metagenome-assembled contigs.

Supplementary Dataset 2

Fasta file containing all the metagenome predicted proteins. Proteins were predicted from assembled contigs using the Prodigal package.

Supplementary Dataset 3

Compilation of average coverage and protein detections for the different assembled contigs and predicted/annotated proteins by genome bin.

Supplementary Dataset 4

Tab 1 contains the compilation of coverage distribution of identified genes of interest and calculated statistical parameters (mean, standard error, P-value and results of pairwise comparisons). Tab 2 contains the rank distribution of genomes/bins extracted from

Supplementary Dataset 5

Bacterial composition of the metagenome of O. disjuntus. Taxonomy rank is presented at the level of order.

Supplementary Dataset 6

Archaeal composition of the metagenome of O. disjuntus. Taxonomy rank is presented at the level of order.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ceja-Navarro, J.A., Karaoz, U., Bill, M. et al. Gut anatomical properties and microbial functional assembly promote lignocellulose deconstruction and colony subsistence of a wood-feeding beetle. Nat Microbiol 4, 864–875 (2019).

Download citation


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing