Antibody neutralization of microbiota-derived circulating peptidoglycan dampens inflammation and ameliorates autoimmunity


The human microbiota provides tonic signals that calibrate the host immune response1,2, but their identity is unknown. Bacterial peptidoglycan (PGN) subunits are likely candidates since they are well-known immunity-enhancing adjuvants, released by most bacteria during growth, and have been found in the blood of healthy people3,4,5,6,7. We developed a monoclonal antibody (mAb), 2E7, that targets muramyl-l-alanyl-d-isoglutamine (MDP), a conserved and minimal immunostimulatory structure of PGN. Using 2E7-based assays, we detected PGN ubiquitously in human blood at a broad range of concentrations that is relatively stable in each individual. We also detected PGN in the serum of several warm-blooded animals. However, PGN is barely detectable in the serum of germ-free mice, indicating that its origin is the host microbiota. Neutralization of circulating PGN via intraperitoneal administration of 2E7 suppressed the development of autoimmune arthritis and experimental autoimmune encephalomyelitis in mice. Arthritic NOD2−/− mice lacking the MDP sensor did not respond to 2E7, indicating that 2E7 dampens inflammation by blocking nucleotide-binding oligomerization domain-containing protein 2 (NOD2)-mediated pathways. We propose that circulating PGN acts as a natural immune potentiator that tunes the host immune response; altering its level is a promising therapeutic strategy for immune-mediated diseases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Characterization of 2E7 and development of icELISA for PGN quantification.
Fig. 2: PGN levels in the serum.
Fig. 3: Increasing the level of circulating PGN promotes CIA development.
Fig. 4: Therapeutic effect of 2E7 on CAIA.

Data availability

All data that support the findings of this study are either included in this published article and its Supplementary Information or available from the corresponding author upon request.


  1. 1.

    Schroeder, B. O. & Bäckhed, F. Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 22, 1079–1089 (2016).

    CAS  Article  Google Scholar 

  2. 2.

    Grigg, J. B. & Sonnenberg, G. F. Host-microbiota interactions shape local and systemic inflammatory diseases. J. Immunol. 198, 564–571 (2017).

    CAS  Article  Google Scholar 

  3. 3.

    Kotani, S., Watanabe, Y., Kinoshita, F., Shimono, T. & Morisaki, I. Immunoadjuvant activities of synthetic N-acetyl-muramyl-peptides or -amino acids. Biken J. 18, 105–111 (1975).

    CAS  PubMed  Google Scholar 

  4. 4.

    Löwy, I., Bona, C. & Chedid, L. Target cells for the activity of a synthetic adjuvant: muramyl dipeptide. Cell. Immunol. 29, 195–199 (1977).

    Article  Google Scholar 

  5. 5.

    Xu, X. L. et al. Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell Host Microbe 4, 28–39 (2008).

    CAS  Article  Google Scholar 

  6. 6.

    Behr, M. A. & Divangahi, M. Freund’s adjuvant, NOD2 and mycobacteria. Curr. Opin. Microbiol. 23, 126–132 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    Alexander, K. L., Targan, S. R. & Elson, C. O. 3rd Microbiota activation and regulation of innate and adaptive immunity. Immunol. Rev. 260, 206–220 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    Erny, D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18, 965–977 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Rogers, G. B. Germs and joints: the contribution of the human microbiome to rheumatoid arthritis. Nat. Med. 21, 839–841 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Lee, W. J. & Hase, K. Gut microbiota-generated metabolites in animal health and disease. Nat. Chem. Biol. 10, 416–424 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    den Besten, G. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54, 2325–2340 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).

    CAS  Article  Google Scholar 

  13. 13.

    Dworkin, J. The medium is the message: interspecies and interkingdom signaling by peptidoglycan and related bacterial glycans. Annu. Rev. Microbiol. 68, 137–154 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    Johnson, J. W., Fisher, J. F. & Mobashery, S. Bacterial cell-wall recycling. Ann. N. Y. Acad. Sci. 1277, 54–75 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    Clarke, T. B. et al. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat. Med. 16, 228–231 (2010).

    CAS  Article  Google Scholar 

  16. 16.

    Caruso, R., Warner, N., Inohara, N. & Núñez, G. NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity 41, 898–908 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    Philpott, D. J., Sorbara, M. T., Robertson, S. J., Croitoru, K. & Girardin, S. E. NOD proteins: regulators of inflammation in health and disease. Nat. Rev. Immunol. 14, 9–23 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    Girardin, S. E. et al. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300, 1584–1587 (2003).

    CAS  Article  Google Scholar 

  19. 19.

    Girardin, S. E. et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278, 8869–8872 (2003).

    CAS  Article  Google Scholar 

  20. 20.

    Rosenberg-Hasson, Y., Hansmann, L., Liedtke, M., Herschmann, I. & Maecker, H. T. Effects of serum and plasma matrices on multiplex immunoassays. Immunol. Res. 58, 224–233 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    Li, Y. et al. Inter-individual variability and genetic influences on cytokine responses to bacteria and fungi. Nat. Med. 22, 952–960 (2016).

    Article  Google Scholar 

  22. 22.

    Brand, D. D., Kang, A. H. & Rosloniec, E. F. The mouse model of collagen-induced arthritis. Methods Mol. Med. 102, 295–312 (2004).

    CAS  PubMed  Google Scholar 

  23. 23.

    Khachigian, L. M. Collagen antibody-induced arthritis. Nat. Protoc. 1, 2512–2516 (2006).

    CAS  Article  Google Scholar 

  24. 24.

    Nakae, S., Nambu, A., Sudo, K. & Iwakura, Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J. Immunol. 171, 6173–6177 (2003).

    CAS  Article  Google Scholar 

  25. 25.

    Miller, S. D., Karpus, W. J. & Davidson, T. S. Experimental autoimmune encephalomyelitis in the mouse. Curr. Protoc. Immunol. Chapter 15, Unit 15.1 (2010).

    PubMed  Google Scholar 

  26. 26.

    Nachbur, U. et al. A RIPK2 inhibitor delays NOD signalling events yet prevents inflammatory cytokine production. Nat. Commun. 6, 6442 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    Cloud-Hansen, K. A. et al. Breaching the great wall: peptidoglycan and microbial interactions. Nat. Rev. Microbiol. 4, 710–716 (2006).

    CAS  Article  Google Scholar 

  28. 28.

    Dagil, Y. A. et al. The dual NOD1/NOD2 agonism of muropeptides containing a meso-diaminopimelic acid residue. PLoS ONE 11, e0160784 (2016).

    Article  Google Scholar 

  29. 29.

    Girardin, S. E. et al. Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J. Biol. Chem. 278, 41702–41708 (2003).

    CAS  Article  Google Scholar 

  30. 30.

    Hnasko, R. M. & Stanker, L. H. Hybridoma technology. Methods Mol. Biol. 1318, 15–28 (2015).

    Article  Google Scholar 

Download references


We thank N.A.R. Gow, J. Heitman, and D. Ko for suggestions on the manuscript and helpful discussions. We thank N. Kaliaperumal and J. Connolly for their kind help with the Luminex and flow cytometry analyses, and W.E. Goldman for providing TCT. This work was supported by National Medical Research Council grant no. BMRC/BnB/0001b/2012 awarded to Y.W., L.C., and N.P.

Author information




Z.X.H. and Y.W. conceptualized the experiments. Z.X.H. and X.L.X. performed the experiments. X.L.X. and J.H.W. raised the monoclonal antibodies. H.S.W. performed the LC–MS analysis. Y.Q. isolated PGN subunits. W.C.C. conducted PGN assays in serum. S.X. and K-P.L analyzed adaptive immune response. L.C. and F.C. collected the blood samples from healthy volunteers. M.O., L.A.B.J., and M.N. collected the blood samples from donors of European ancestry. C.Y.L.N and K.P.L collected clinical samples. P.K. and S.P. raised the germ-free mice and provided serum samples. N.P. performed the statistical analyses. Y.W., L.C., and N.P. acquired the funding. Y.W. supervised the project. Y.W. and Z.X.H. wrote the manuscript.

Corresponding author

Correspondence to Yue Wang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–9, Supplementary Tables 1 and 2, and Supplementary References.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Wang, J., Xu, X. et al. Antibody neutralization of microbiota-derived circulating peptidoglycan dampens inflammation and ameliorates autoimmunity. Nat Microbiol 4, 766–773 (2019).

Download citation

Further reading