A systematic review of biomarkers to detect active tuberculosis

Abstract

Millions of cases of tuberculosis (TB) go undiagnosed each year. Better diagnostic tools are urgently needed. Biomarker-based or multiple marker biosignature-based tests, ideally performed on blood or urine, for the detection of active TB might help to meet target product profiles proposed by the World Health Organization for point-of-care testing. We conducted a systematic review to summarize evidence on proposed biomarkers and biosignatures and evaluate their quality and level of evidence. We screened the titles and abstracts of 7,631 citations and included 443 publications that fulfilled the inclusion criteria and were published in 2010–2017. The types of biomarkers identified included antibodies, cytokines, metabolic activity markers, mycobacterial antigens and volatile organic compounds. Only 47% of studies reported a culture-based reference standard and diagnostic sensitivity and specificity. Forty-four biomarkers (4%) were identified in high-quality studies and met the target product profile minimum criteria, of which two have been incorporated into commercial assays. Of the 44 highest-quality biomarkers, 24 (55%) were multiple marker biosignatures. No meta-analyses were performed owing to between-study heterogeneity. In conclusion, TB biomarker discovery studies are often poorly designed and findings are rarely confirmed in independent studies. Few markers progress to a further developmental stage. More validation studies that consider the intended diagnostic use cases and apply rigorous design are needed. The extracted data from this review are currently being used by FIND as the foundation of a dynamic database in which biomarker data and developmental status will be presented.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2: Summary of the results of QUADAS-2 assessment for the risk of bias to assess study quality.
Fig. 3: Classification and number of entries per biomarker category and analysis group.
Fig. 4: Biomarker entries per category in ROC plots.
Fig. 5: Details of the 44 entries that meet the TPP criteria in clinically relevant populations.

Data availability

The data that support the findings of this study are available on www.Bm2Dx.org and are available from the corresponding author on request. A complete list of the included studies is provided in Supplementary Table 1.

Change history

  • 11 April 2019

    In the original version of this Analysis, author Seda Yerlikaya was mistakenly spelled as Seda Yerliyaka. This has now been amended.

References

  1. 1.

    The WHO End TB Strategy (World Health Organization, 2015).

  2. 2.

    Cazabon, D. et al. Quality of tuberculosis care in high burden countries: the urgent need to address gaps in the care cascade. Int. J. Infect. Dis. 56, 111–116 (2017).

    PubMed  Google Scholar 

  3. 3.

    Kik, S. V., Denkinger, C. M., Casenghi, M., Vadnais, C. & Pai, M. Tuberculosis diagnostics: which target product profiles should be prioritised? Eur. Respir. J. 44, 537–540 (2014).

    PubMed  Google Scholar 

  4. 4.

    Biomarkers Definitions Working Group Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69, 89–95 (2001).

    Google Scholar 

  5. 5.

    Wallis, R. S. et al. Tuberculosis biomarkers discovery: developments, needs, and challenges. Lancet Infect. Dis. 13, 362–372 (2013).

    PubMed  Google Scholar 

  6. 6.

    Out of Step 2017: TB Policies in 29 Countries (MSF, 2017).

  7. 7.

    Cattamanchi, A. et al. Interferon-γ release assays for the diagnosis of latent tuberculosis infection in HIV-infected individuals: a systematic review and meta-analysis. J. Acquir. Immune Defic. Syndr. 56, 230–238 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Diel, R. et al. Interferon-γ release assays for the diagnosis of latent Mycobacterium tuberculosis infection: a systematic review and meta-analysis. Eur. Respir. J. 37, 88–99 (2011).

    CAS  PubMed  Google Scholar 

  9. 9.

    Metcalfe, J. Z. et al. Interferon-γ release assays for active pulmonary tuberculosis diagnosis in adults in low- and middle-income countries: systematic review and meta-analysis. J. Infect. Dis. 204, S1120–S1129 (2011).

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Minion, J. et al. Diagnosing tuberculosis with urine lipoarabinomannan: systematic review and meta-analysis. Eur. Respir. J. 38, 1398–1405 (2011).

    CAS  PubMed  Google Scholar 

  11. 11.

    Shah, M. et al. Urine lateral flow lipoarabinomannan assay for diagnosing active tuberculosis in adults living with HIV. Cochrane Database Syst. Rev. 12, CD011420 (2014).

    Google Scholar 

  12. 12.

    Steingart, K. R. et al. Commercial serological tests for the diagnosis of active pulmonary and extrapulmonary tuberculosis: an updated systematic review and meta-analysis. PLoS Med. 8, e1001062 (2011).

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Petruccioli, E. et al. Correlates of tuberculosis risk: predictive biomarkers for progression to active tuberculosis. Eur. Respir. J. 48, 1751–1763 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Wallis, R. S. et al. Biomarkers and diagnostics for tuberculosis: progress, needs, and translation into practice. Lancet 375, 1920–1937 (2010).

    CAS  PubMed  Google Scholar 

  15. 15.

    Wallis, R. S. et al. Tuberculosis—advances in development of new drugs, treatment regimens, host-directed therapies, and biomarkers. Lancet Infect. Dis. 16, e34–e46 (2016).

    CAS  PubMed  Google Scholar 

  16. 16.

    Use of High Burden Country Lists for TB by WHO in the Post-2015 Era (World Health Organization, 2015).

  17. 17.

    Ben-Selma, W. et al. Evaluation of the diagnostic value of measuring IgG, IgM, and IgA antibodies to mycobacterial A60 antigen in active tuberculosis. Diagn. Microbiol. Infect. Dis. 68, 55–59 (2010).

    CAS  PubMed  Google Scholar 

  18. 18.

    Shete, P. B. et al. Evaluation of antibody responses to panels of M. tuberculosis antigens as a screening tool for active tuberculosis in Uganda. PLoS ONE 12, e0180122 (2017).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Rekha, R. S. et al. Validation of the ALS assay in adult patients with culture confirmed pulmonary tuberculosis. PLoS ONE 6, e16425 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Khaliq, A. et al. Field evaluation of a blood based test for active tuberculosis in endemic settings. PLoS ONE 12, e0173359 (2017).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Ben-Selma, W., Harizi, H. & Boukadida, J. Immunochromatographic IgG/IgM test for rapid diagnosis of active tuberculosis. Clin. Vaccine Immunol. 18, 2090–2094 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Tasbiti, A. H. et al. Evaluation of antigen detection test (chromatographic immunoassay): potential to replace the antibody assay using purified 45-kDa protein for rapid diagnosis of tuberculosis. J. Clin. Lab. Anal. 28, 70–76 (2014).

    CAS  PubMed  Google Scholar 

  23. 23.

    You, X. et al. Evaluation of Rv0220, Rv2958c, Rv2994 and Rv3347c of Mycobacterium tuberculosis for serodiagnosis of tuberculosis. Microb. Biotechnol. 10, 604–611 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Yari, S. et al. Purification of modified mycobacterial A60 antigen by affinity chromatography and its use for rapid diagnostic tuberculosis infection. J. Microbiol. Methods 87, 184–188 (2011).

    CAS  PubMed  Google Scholar 

  25. 25.

    Awoniyi, D. O. et al. Detection of a combination of serum IgG and IgA antibodies against selected mycobacterial targets provides promising diagnostic signatures for active TB. Oncotarget 8, 37525–37537 (2017).

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Goyal, B. et al. Utility of B-cell epitopes based peptides of RD1 and RD2 antigens for immunodiagnosis of pulmonary tuberculosis. Diagn. Microbiol. Infect. Dis. 78, 391–397 (2014).

    CAS  PubMed  Google Scholar 

  27. 27.

    Jacobs, R. et al. Diagnostic potential of novel salivary host biomarkers as candidates for the immunological diagnosis of tuberculosis disease and monitoring of tuberculosis treatment response. PLoS ONE 11, e0160546 (2016).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Chegou, N. N. et al. Diagnostic performance of a seven-marker serum protein biosignature for the diagnosis of active TB disease in African primary healthcare clinic attendees with signs and symptoms suggestive of TB. Thorax 71, 785–794 (2016).

    PubMed  Google Scholar 

  29. 29.

    Jacobs, R. et al. Identification of novel host biomarkers in plasma as candidates for the immunodiagnosis of tuberculosis disease and monitoring of tuberculosis treatment response. Oncotarget 7, 57581–57592 (2016).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Sandhu, G. et al. Discriminating active from latent tuberculosis in patients presenting to community clinics. PLoS ONE 7, e38080 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Liang, Y. et al. Evaluation of a whole-blood chemiluminescent immunoassay of IFN-γ, IP-10, and MCP-1 for diagnosis of active pulmonary tuberculosis and tuberculous pleurisy patients. APMIS 124, 856–864 (2016).

    CAS  PubMed  Google Scholar 

  32. 32.

    Chen, T. et al. Cytokine and antibody based diagnostic algorithms for sputum culture-positive pulmonary tuberculosis. PLoS ONE 10, e0144705 (2015).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Xu, D. et al. Serum protein S100A9, SOD3, and MMP9 as new diagnostic biomarkers for pulmonary tuberculosis by iTRAQ-coupled two-dimensional LC–MS/MS. Proteomics 15, 58–67 (2015).

    CAS  PubMed  Google Scholar 

  34. 34.

    Jiang, T. T. et al. Serum amyloid A, protein Z, and C4b-binding protein β chain as new potential biomarkers for pulmonary tuberculosis. PLoS ONE 12, e0173304 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Deng, C. W. et al. Establishing a serologic decision tree model of extrapulmonary tuberculosis by MALDI–TOF MS analysis. Diagn. Microbiol. Infect. Dis. 71, 144–150 (2011).

    CAS  PubMed  Google Scholar 

  36. 36.

    Sharma, D., Dhiman, P., Rajendiran, S., Ravikumar, N. & Krishna, M. H. Osteoarticular tuberculosis: in search of new biomarkers. Eur. J. Orthop. Surg. Traumatol. 6, 195–200 (2015).

    Google Scholar 

  37. 37.

    Kalantri, Y., Hemvani, N. & Chitnis, D. S. Evaluation of real-time polymerase chain reaction, interferon-γ, adenosine deaminase, and immunoglobulin A for the efficient diagnosis of pleural tuberculosis. Int. J. Infect. Dis. 15, e226–e231 (2011).

    CAS  PubMed  Google Scholar 

  38. 38.

    Liu, Y. Y. et al. A combination of the QuantiFERON-TB Gold In-Tube assay and the detection of adenosine deaminase improves the diagnosis of tuberculous pleural effusion. Emerg. Microbes Infect. 5, e83 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Sutherland, J. S. et al. Highly accurate diagnosis of pleural tuberculosis by immunological analysis of the pleural effusion. PLoS ONE 7, e30324 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Kaforou, M. et al. Detection of tuberculosis in HIV-infected and -uninfected African adults using whole blood RNA expression signatures: a case–control study. PLoS Med. 10, e1001538 (2013).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Laux da Costa, L. et al. A real-time PCR signature to discriminate between tuberculosis and other pulmonary diseases. Tuberculosis 95, 421–425 (2015).

    CAS  PubMed  Google Scholar 

  42. 42.

    Francisco, N. M. et al. Diagnostic accuracy of a selected signature gene set that discriminates active pulmonary tuberculosis and other pulmonary diseases. J. Infect. 75, 499–510 (2017).

    PubMed  Google Scholar 

  43. 43.

    Lawn, S. D., Kerkhoff, A. D., Vogt, M. & Wood, R. Diagnostic accuracy of a low-cost, urine antigen, point-of-care screening assay for HIV-associated pulmonary tuberculosis before antiretroviral therapy: a descriptive study. Lancet Infect. Dis. 12, 201–209 (2012).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Tiwari, D. et al. Fast and efficient detection of tuberculosis antigens using liposome encapsulated secretory proteins of Mycobacterium tuberculosis. J. Microbiol. Immunol. Infect. 50, 189–198 (2017).

    CAS  PubMed  Google Scholar 

  45. 45.

    Mourão, M. P. B. et al. Direct detection of Mycobacterium tuberculosis in sputum: a validation study using solid phase extraction-gas chromatography–mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1012–1013, 50–54 (2016).

    PubMed  Google Scholar 

  46. 46.

    Dang, N. A. et al. Direct detection of Mycobacterium tuberculosis in sputum using combined solid phase extraction-gas chromatography–mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 986–987, 115–122 (2015).

    PubMed  Google Scholar 

  47. 47.

    Szewczyk, R., Kowalski, K., Janiszewska-Drobinska, B. & Druszczynska, M. Rapid method for Mycobacterium tuberculosis identification using electrospray ionization tandem mass spectrometry analysis of mycolic acids. Diagn. Microbiol. Infect. Dis. 76, 298–305 (2013).

    CAS  PubMed  Google Scholar 

  48. 48.

    Shui, G. et al. Mycolic acids as diagnostic markers for tuberculosis case detection in humans and drug efficacy in mice. EMBO Mol. Med. 4, 27–37 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Reither, K. et al. Evaluation of Diagnos TB AG, a flow-through immunoassay for rapid detection of pulmonary tuberculosis. Int. J. Tuberc. Lung Dis. 14, 238–240 (2010).

    CAS  PubMed  Google Scholar 

  50. 50.

    Khurshid, S., Khalid, R., Afzal, M. & Waheed Akhtar, M. Truncation of PstS1 antigen of Mycobacterium tuberculosis improves diagnostic efficiency. Tuberculosis 93, 654–659 (2013).

    CAS  PubMed  Google Scholar 

  51. 51.

    Ben-Selma, W. et al. Rapid detection of immunoglobulin G against Mycobacterium tuberculosis antigens by two commercial ELISA kits. Int. J Tuberc. Lung Dis. 14, 841–846 (2010).

    CAS  PubMed  Google Scholar 

  52. 52.

    He, X. Y. et al. Assessment of five antigens from Mycobacterium tuberculosis for serodiagnosis of tuberculosis. Clin. Vaccine Immunol. 18, 565–570 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Chung, W. et al. Serum CXCR3 ligands as biomarkers for the diagnosis and treatment monitoring of tuberculosis. Int. J. Tuberc. Lung Dis. 19, 1476–1484 (2015).

    CAS  PubMed  Google Scholar 

  54. 54.

    Chung, W. Y. et al. A TB antigen-stimulated CXCR3 ligand assay for the diagnosis of active pulmonary TB. Chest 146, 283–291 (2014).

    CAS  PubMed  Google Scholar 

  55. 55.

    Yang, Q. T. et al. IP-10 and MIG are compartmentalized at the site of disease during pleural and meningeal tuberculosis and are decreased after antituberculosis treatment. Clin. Vaccine Immunol. 21, 1635–1644 (2014).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    You, E., Kim, M. H., Lee, W. I. & Kang, S. Y. Evaluation of IL-2, IL-10, IL-17 and IP-10 as potent discriminative markers for active tuberculosis among pulmonary tuberculosis suspects. Tuberculosis 99, 100–108 (2016).

    CAS  PubMed  Google Scholar 

  57. 57.

    Sun, Q., Wei, W. & Sha, W. Potential role for Mycobacterium tuberculosis specific IL-2 and IFN-γ responses in discriminating between latent infection and active disease after long-term stimulation. PLoS ONE 11, e0166501 (2016).

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Awoniyi, D. O. et al. Evaluation of cytokine responses against novel Mtb antigens as diagnostic markers for TB disease. J. Infect. 73, 219–230 (2016).

    PubMed  Google Scholar 

  59. 59.

    Drain, P. K. et al. Diagnostic accuracy and clinical role of rapid C-reactive protein testing in HIV-infected individuals with presumed tuberculosis in South Africa. Int. J. Tuberc. Lung Dis. 18, 20–26 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Meldau, R. et al. Comparison of same day diagnostic tools including Gene Xpert and unstimulated IFN-γ for the evaluation of pleural tuberculosis: a prospective cohort study. BMC Pulm. Med. 14, 58 (2014).

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Ogata, Y. et al. Is adenosine deaminase in pleural fluid a useful marker for differentiating tuberculosis from lung cancer or mesothelioma in Japan, a country with intermediate incidence of tuberculosis? Acta Med. Okayama 65, 259–263 (2011).

    CAS  PubMed  Google Scholar 

  62. 62.

    Qi, Z. J., Yu, H., Zhang, J. & Li, C. S. Presepsin as a novel diagnostic biomarker for differentiating active pulmonary tuberculosis from bacterial community acquired pneumonia. Clin. Chim. Acta 478, 152–156 (2018).

    CAS  PubMed  Google Scholar 

  63. 63.

    Anderson, S. T. et al. Diagnosis of childhood tuberculosis and host RNA expression in Africa. N. Engl. J. Med. 370, 1712–1723 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Cai, Y. et al. Increased complement C1q level marks active disease in human tuberculosis. PLoS ONE 9, e92340 (2014).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Jacobs, R. et al. Host biomarkers detected in saliva show promise as markers for the diagnosis of pulmonary tuberculosis disease and monitoring of the response to tuberculosis treatment. Cytokine 81, 50–56 (2016).

    CAS  PubMed  Google Scholar 

  66. 66.

    Hanafiah, K. H. et al. Serological biomarker screening and host factor analysis elucidating immune response heterogeneity in active pulmonary tuberculosis. Trop. Biomed. 34, 556–569 (2017).

    Google Scholar 

  67. 67.

    Yoon, C. et al. Point-of-care C-reactive protein-based tuberculosis screening for people living with HIV: a diagnostic accuracy study. Lancet Infect. Dis. 17, 1285–1292 (2017).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Singh, N. et al. Diagnosis of pulmonary and extrapulmonary tuberculosis based on detection of mycobacterial antigen 85B by immuno-PCR. Diagn. Microbiol. Infect. Dis. 83, 359–364 (2015).

    CAS  PubMed  Google Scholar 

  69. 69.

    Kolk, A. H. J. et al. Breath analysis as a potential diagnostic tool for tuberculosis. Int. J. Tuberc. Lung Dis. 16, 777–782 (2012).

    CAS  PubMed  Google Scholar 

  70. 70.

    Phillips, M. et al. Breath biomarkers of active pulmonary tuberculosis. Tuberculosis 90, 145–151 (2010).

    CAS  PubMed  Google Scholar 

  71. 71.

    Kolk, A. et al. Electronic-nose technology using sputum samples in diagnosis of patients with tuberculosis. J. Clin. Microbiol. 48, 4235–4238 (2010).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Lim, S. H. et al. Rapid diagnosis of tuberculosis from analysis of urine volatile organic compounds. ACS Sensors 1, 852–856 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Poste, G. Bring on the biomarkers. Nature 469, 156–157 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Yerlikaya, S., Broger, T., MacLean, E., Pai, M. & Denkinger, C. M. A tuberculosis biomarker database: the key to novel TB diagnostics. Int. J. Infect. Dis. 56, 253–257 (2017).

    CAS  PubMed  Google Scholar 

  75. 75.

    Goodman, S. N. Toward evidence-based medical statistics. 1: The P value fallacy. Ann. Intern. Med. 130, 995–1004 (1999).

    CAS  PubMed  Google Scholar 

  76. 76.

    Lijmer, J. G. et al. Empirical evidence of design-related bias in studies of diagnostic tests. JAMA 282, 1061–1066 (1999).

    CAS  PubMed  Google Scholar 

  77. 77.

    Rutjes, A. W. et al. Evidence of bias and variation in diagnostic accuracy studies. CMAJ 174, 469–476 (2006).

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Tessema, B. et al. FIND Tuberculosis Strain Bank: a resource for researchers and developers working on tests to detect Mycobacterium tuberculosis and related drug resistance. J. Clin. Microbiol. 55, 1066–1073 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Vincent, V. et al. The TDR Tuberculosis Strain Bank: a resource for basic science, tool development and diagnostic services. Int. J. Tuberc. Lung Dis. 16, 24–31 (2012).

    CAS  PubMed  Google Scholar 

  80. 80.

    Commercial Serodiagnostic Tests for Diagnosis of Tuberculosis — Policy Statement (World Health Organization, 2011).

  81. 81.

    Target Product Profile: Test for Incipient Tuberculosis (FIND, 2017).

  82. 82.

    Yoon, C. et al. Diagnostic accuracy of C-reactive protein for active pulmonary tuberculosis: a meta-analysis. Int. J. Tuberc. Lung Dis. 21, 1013–1019 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Kapasi, A. J., Dittrich, S., Gonzalez, I. J. & Rodwell, T. C. Host biomarkers for distinguishing bacterial from non-bacterial causes of acute febrile illness: a comprehensive review. PLoS ONE 11, e0160278 (2016).

    PubMed  PubMed Central  Google Scholar 

  84. 84.

    Black, S., Kushner, I. & Samols, D. C-reactive protein. J. Biol. Chem. 279, 48487–48490 (2004).

    CAS  PubMed  Google Scholar 

  85. 85.

    Camelo, L. V. et al. Life course socioeconomic position and C-reactive protein: mediating role of health-risk behaviors and metabolic alterations. The Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). PLoS ONE 9, e108426 (2014).

    PubMed  PubMed Central  Google Scholar 

  86. 86.

    Geluk, A. & Corstjens, P. CRP: tell-tale biomarker or common denominator? Lancet Infect. Dis. 17, 1225–1227 (2017).

    PubMed  Google Scholar 

  87. 87.

    MacLean, E. & Broger, T. A 10-gene signature for the diagnosis and treatment monitoring of active tuberculosis using a molecular interaction network approach. EBioMedicine 16, 22–23 (2017).

    PubMed  PubMed Central  Google Scholar 

  88. 88.

    Drain, P. K. et al. Incipient and subclinical tuberculosis: a clinical review of early stages and progression of infection. Clin. Microbiol. Rev. 31, e00021-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Sweeney, T. E., Braviak, L., Tato, C. M. & Khatri, P. Genome-wide expression for diagnosis of pulmonary tuberculosis: a multicohort analysis. Lancet Respir. Med. 4, 213–224 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Zak, D. E. et al. A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet 387, 2312–2322 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Diagnostics Pipeline Tracker: Tuberculosis (FIND, 2017).

  92. 92.

    Schumacher, S. G. & Denkinger, C. M. Diagnostic test for incipient tuberculosis: a step forward, many more to go. Am. J. Respir. Crit. Care Med. 197, 1106–1107 (2018).

    PubMed  Google Scholar 

  93. 93.

    Boehme, C. C. et al. Feasibility, diagnostic accuracy, and effectiveness of decentralised use of the Xpert MTB/RIF test for diagnosis of tuberculosis and multidrug resistance: a multicentre implementation study. Lancet 377, 1495–1505 (2011).

    PubMed  PubMed Central  Google Scholar 

  94. 94.

    Shah, M. et al. Lateral flow urine lipoarabinomannan assay for detecting active tuberculosis in HIV-positive adults. Cochrane Database Syst. Rev. 5, CD011420 (2016).

    Google Scholar 

  95. 95.

    Paris, L. et al. Urine lipoarabinomannan glycan in HIV-negative patients with pulmonary tuberculosis correlates with disease severity. Sci. Transl Med. 9, eaal2807 (2017).

    PubMed  PubMed Central  Google Scholar 

  96. 96.

    Amin, A. G. et al. Detection of lipoarabinomannan in urine and serum of HIV-positive and HIV-negative TB suspects using an improved capture-enzyme linked immuno absorbent assay and gas chromatography/mass spectrometry. Tuberculosis (Edinb.) 111, 178–187 (2018).

    CAS  Google Scholar 

  97. 97.

    Sigal, G. B. et al. A novel sensitive immunoassay targeting the MTX-lipoarabinomannan epitope meets the WHO’s performance target for tuberculosis diagnosis. J. Clin. Microbiol. 56, e01338-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  98. 98.

    Macaskill, P., Gatsonis, C., Deeks, J., Harbord, R. & Takwoingi, Y. in Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy (The Cochrane Collaboration, 2010); https://methods.cochrane.org/sites/methods.cochrane.org.sdt/files/public/uploads/Chapter%2010%20-%20Version%201.0.pdf

  99. 99.

    Hamilton, C. D. et al. RePORT International: advancing tuberculosis biomarker research through global collaboration. Clin. Infect. Dis. 61, S155–S159 (2015).

    PubMed Central  Google Scholar 

  100. 100.

    Piccazzo, R., Paparo, F. & Garlaschi, G. Diagnostic accuracy of chest radiography for the diagnosis of tuberculosis (TB) and its role in the detection of latent TB infection: a systematic review. J. Rheumatol. Suppl. 91, 32–40 (2014).

    PubMed  Google Scholar 

  101. 101.

    Steingart, K. R. et al. Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst. Rev. 1, CD009593 (2014).

    Google Scholar 

  102. 102.

    Nagai, K. et al. Diagnostic test accuracy of loop-mediated isothermal amplification assay for Mycobacterium tuberculosis: systematic review and meta-analysis. Sci. Rep. 6, 39090 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Nathavitharana, R. R. et al. Accuracy of line probe assays for the diagnosis of pulmonary and multidrug-resistant tuberculosis: a systematic review and meta-analysis. Eur. Respir. J. 49, 1601075 (2017).

    PubMed  PubMed Central  Google Scholar 

  104. 104.

    Rangaka, M. X. et al. Predictive value of interferon-γ release assays for incident active tuberculosis: a systematic review and meta-analysis. Lancet Infect. Dis. 12, 45–55 (2012).

    CAS  PubMed  Google Scholar 

  105. 105.

    Wilson, E. B. Probable inference, the law of succession, and statistical inference. J. Am. Stat. Assoc. 22, 209–212 (1927).

    Google Scholar 

  106. 106.

    Whiting, P. F. et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 155, 529–536 (2011).

    PubMed  Google Scholar 

  107. 107.

    Steingart, K. R. et al. Commercial serological antibody detection tests for the diagnosis of pulmonary tuberculosis: a systematic review. PLoS Med. 4, e254 (2007).

    PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Togun (data quality checking), S. Huddart (graphics work) and R. Wyss (data curation). We also thank the New Diagnostic Working Group Biomarkers Task Force (for feedback on the design of this systematic review and on the manuscript). The New Diagnostics Working Group: D. M. Cirillo (San Raffaele Scientific Institute, Italy), C.M.D. (FIND, Switzerland), M. Doherty (SSI, Denmark), J. L. Gardiner (BMGF, USA), M. L. Gennaro (Rutgers, USA), S. A. Joosten (Leiden University, The Netherlands), M. Kaforou (Imperial College London, UK), E.M. (McGill University, Canada), P. Nahid (UCSF, USA), M.P. (McGill University, Canada), M. Schito (C-PATH, USA), T. J. Scriba (University of Cape Town, South Africa), R. S. Wallis (Aurum Institute, South Africa), G. Walzl (Stellenbosch University, South Africa), S.Y. (FIND, Switzerland), A. Zumla (UCL, UK) and T.B. (FIND, Switzerland). The work was funded by the Dutch Ministry of Foreign Affairs and the New Diagnostics Working Group of the Stop TB Partnership.

Author information

Affiliations

Authors

Contributions

E.M., T.B., M.P. and C.M.D. designed and conceptualized the study. E.M. screened all of the studies. E.M. and B.L.F.-C. performed the primary data extraction. T.B., B.L.F.-C. and S.Y. validated the data. E.M. and T.B. created the analysis plan. T.B. performed the formal data analysis. E.M. and T.B. wrote the original draft of the manuscript. B.L.F.-C., S.Y., M.P. and C.M.D. provided critical editing and review.

Corresponding author

Correspondence to Claudia M. Denkinger.

Ethics declarations

Competing interests

T.B., S.Y., B.L.F.-C. and C.M.D. are employed by FIND. FIND is a not-for-profit foundation that supports the evaluation of publicly prioritized TB assays and the implementation of WHO-approved (guidance and prequalification) assays using donor grants. FIND has product evaluation agreements with several private sector companies that design diagnostics for TB and other diseases. These agreements strictly define FIND’s independence and neutrality vis-a-vis the companies whose products get evaluated and describe roles and responsibilities. M.P. serves on the WHO SAGE IVD Group and is a member of the Scientific Advisory Committee of FIND. M.P. and E.M. have no industry or financial conflicts.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1 and 2, Supplementary Tables 1 and 2, Supplementary Methods and Supplementary Notes.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

MacLean, E., Broger, T., Yerlikaya, S. et al. A systematic review of biomarkers to detect active tuberculosis. Nat Microbiol 4, 748–758 (2019). https://doi.org/10.1038/s41564-019-0380-2

Download citation

Further reading