Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Social evolution of innate immunity evasion in a virus

Abstract

Antiviral immunity has been studied extensively from the perspective of virus−cell interactions, yet the role of virus−virus interactions remains poorly addressed. Here, we demonstrate that viral escape from interferon (IFN)-based innate immunity is a social process in which IFN-stimulating viruses determine the fitness of neighbouring viruses. We propose a general and simple social evolution framework to analyse how natural selection acts on IFN shutdown and validate it in cell cultures and mice infected with vesicular stomatitis virus. Furthermore, we find that IFN shutdown is costly because it reduces short-term viral progeny production, thus fulfilling the definition of an altruistic trait. Hence, in well-mixed populations, the IFN-blocking wild-type virus is susceptible to invasion by IFN-stimulating variants and spatial structure consequently determines whether IFN shutdown can evolve. Our findings reveal that fundamental social evolution rules govern viral innate immunity evasion and virulence and suggest possible antiviral interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Social evolution model for innate immunity evasion.
Fig. 2: Interaction between VSV WT and Δ51 variants.
Fig. 3: Real-time fluorescence microscopy of VSV WT and Δ51 in MEFs.
Fig. 4: Fitness cost of IFN shutdown.
Fig. 5: Metapopulation structure selects for IFN shutdown.
Fig. 6: Fluorescence microscopy of VSV-infected mouse brains.

Similar content being viewed by others

Data availability

No restrictions apply to data availability. Relevant data are provided in the manuscript and the Supplementary Information. All data are available from the corresponding author upon request. No new protein, DNA or RNA sequence data, macromolecular structures, crystallographic data or microarray data requiring deposition in public repositories were produced.

References

  1. Nowak, M. A. Five rules for the evolution of cooperation. Science 314, 1560–1563 (2006).

    Article  CAS  Google Scholar 

  2. Fletcher, J. A. & Doebeli, M. A simple and general explanation for the evolution of altruism. Proc. Biol. Sci. 276, 13–19 (2009).

    Article  Google Scholar 

  3. Gardner, A., West, S. A. & Wild, G. The genetical theory of kin selection. J. Evol. Biol. 24, 1020–1043 (2011).

    Article  CAS  Google Scholar 

  4. Díaz-Munoz, S. L., Sanjuán, R. & West, S. Sociovirology: conflict, cooperation, and communication among viruses. Cell Host Microbe 22, 437–441 (2017).

    Article  Google Scholar 

  5. Turner, P. E. & Chao, L. Prisoner’s dilemma in an RNA virus. Nature 398, 441–443 (1999).

    Article  CAS  Google Scholar 

  6. Skums, P., Bunimovich, L. & Khudyakov, Y. Antigenic cooperation among intrahost HCV variants organized into a complex network of cross-immunoreactivity. Proc. Natl Acad. Sci. USA 112, 6653–6658 (2015).

    Article  CAS  Google Scholar 

  7. Erez, Z. et al. Communication between viruses guides lysis-lysogeny decisions. Nature 541, 488–493 (2017).

    Article  CAS  Google Scholar 

  8. Borges, A. L. et al. Bacteriophage cooperation suppresses CRISPR-Cas3 and Cas9 immunity. Cell 174, 917–925 (2018).

    Article  CAS  Google Scholar 

  9. Xue, K. S., Hooper, K. A., Ollodart, A. R., Dingens, A. S. & Bloom, J. D. Cooperation between distinct viral variants promotes growth of H3N2 influenza in cell culture.eLife 5, e13974 (2016).

    Article  Google Scholar 

  10. Leggett, H. C., Brown, S. P. & Reece, S. E. War and peace: social interactions in infections. Phil. Trans. R. Soc. B 369, 20130365 (2014).

    Article  Google Scholar 

  11. Xavier, J. B. Sociomicrobiology and pathogenic bacteria. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.VMBF-0019-2015 (2016).

  12. Ivashkiv, L. B. & Donlin, L. T. Regulation of type I interferon responses. Nat. Rev. Immunol. 14, 36–49 (2014).

    Article  CAS  Google Scholar 

  13. Fensterl, V., Chattopadhyay, S. & Sen, G. C. No love lost between viruses and interferons. Annu. Rev. Virol. 2, 549–572 (2015).

    Article  CAS  Google Scholar 

  14. García-Sastre, A. Ten strategies of interferon evasion by viruses. Cell Host Microbe 22, 176–184 (2017).

    Article  Google Scholar 

  15. Coccia, E. M. & Battistini, A. Early IFN type I response: learning from microbial evasion strategies. Semin. Immunol. 27, 85–101 (2015).

    Article  CAS  Google Scholar 

  16. Lion, S., Jansen, V. A. & Day, T. Evolution in structured populations: beyond the kin versus group debate. Trends Ecol. Evol. 26, 193–201 (2011).

    Article  Google Scholar 

  17. Birch, J. Kin selection, group selection, and the varieties of population structure. Brit. J. Phil. Sci. https://doi.org/10.1093/bjps/axx028 (2018).

  18. Lehtonen, J. Multilevel selection in kin selection language. Trends Ecol. Evol. 31, 752–762 (2016).

    Article  Google Scholar 

  19. Marshall, J. A. Group selection and kin selection: formally equivalent approaches. Trends Ecol. Evol. 26, 325–332 (2011).

    Article  Google Scholar 

  20. West, S. A., Griffin, A. S., Gardner, A. & Diggle, S. P. Social evolution theory for microorganisms. Nat. Rev. Microbiol. 4, 597–607 (2006).

    Article  CAS  Google Scholar 

  21. O’Brien, S., Luján, A. M., Paterson, S., Cant, M. A. & Buckling, A. Adaptation to public goods cheats in Pseudomonas aeruginosa. Proc. Biol. Sci. 284, 20171089 (2017).

    Article  Google Scholar 

  22. Jin, Z. et al. Conditional privatization of a public siderophore enables Pseudomonas aeruginosa to resist cheater invasion. Nat. Commun. 9, 1383 (2018).

    Article  Google Scholar 

  23. Rajani, K. R. et al. Complexes of vesicular stomatitis virus matrix protein with host Rae1 and Nup98 involved in inhibition of host transcription. PLoS Pathog. 8, e1002929 (2012).

    Article  Google Scholar 

  24. Quan, B., Seo, H. S., Blobel, G. & Ren, Y. Vesiculoviral matrix (M) protein occupies nucleic acid binding site at nucleoporin pair (Rae1 * Nup98). Proc. Natl Acad. Sci. USA 111, 9127–9132 (2014).

    Article  CAS  Google Scholar 

  25. Stojdl, D. F. et al. VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell 4, 263–275 (2003).

    Article  CAS  Google Scholar 

  26. Voigt, E. A., Swick, A. & Yin, J. Rapid induction and persistence of paracrine-induced cellular antiviral states arrest viral infection spread in A549 cells. Virology 496, 59–66 (2016).

    Article  CAS  Google Scholar 

  27. Howat, T. J., Barreca, C., O’Hare, P., Gog, J. R. & Grenfell, B. T. Modelling dynamics of the type I interferon response to in vitro viral infection. J. R. Soc. Interface 3, 699–709 (2006).

    Article  CAS  Google Scholar 

  28. Samuel, C. E. & Knutson, G. S. Mechanism of interferon action. Kinetics of decay of the antiviral state and protein phosphorylation in mouse fibroblasts treated with natural and cloned interferons. J. Biol. Chem. 257, 6 (1982).

    Google Scholar 

  29. Zwart, M. P. & Elena, S. F. Matters of size: genetic bottlenecks in virus infection and their potential impact on evolution. Annu. Rev. Virol. 2, 161–179 (2015).

    Article  CAS  Google Scholar 

  30. Gutiérrez, S., Michalakis, Y. & Blanc, S. Virus population bottlenecks during within-host progression and host-to-host transmission. Curr. Opin. Virol. 2, 546–555 (2012).

    Article  Google Scholar 

  31. McCrone, J. T. & Lauring, A. S. Genetic bottlenecks in intraspecies virus transmission. Curr. Opin. Virol. 28, 20–25 (2018).

    Article  Google Scholar 

  32. Richard, M., Herfst, S., Tao, H., Jacobs, N. T. & Lowen, A. C. Influenza A virus reassortment is limited by anatomical compartmentalization following co-infection via distinct routes. J. Virol. https://doi.org/10.1128/JVI.02063-17 (2017).

  33. Salemi, M. & Rife, B. Phylogenetics and phyloanatomy of HIV/SIV intra-host compartments and reservoirs: the key role of the central nervous system. Curr. HIV Res. 14, 110–120 (2016).

    Article  CAS  Google Scholar 

  34. Detje, C. N. et al. Local type I IFN receptor signaling protects against virus spread within the central nervous system. J. Immunol. 182, 2297–2304 (2009).

    Article  CAS  Google Scholar 

  35. Francoeur, A. M., Poliquin, L. & Stanners, C. P. The isolation of interferon-inducing mutants of vesicular stomatitis virus with altered viral P function for the inhibition of total protein synthesis. Virology 160, 236–245 (1987).

    Article  CAS  Google Scholar 

  36. Novella, I. S., Hershey, C. L., Escarmís, C., Domingo, E. & Holland, J. J. Lack of evolutionary stasis during alternating replication of an arbovirus in insect and mammalian cells. J. Mol. Biol. 287, 459–465 (1999).

    Article  CAS  Google Scholar 

  37. Cuevas, J. M., Elena, S. F. & Moya, A. Molecular basis of adaptive convergence in experimental populations of RNA viruses. Genetics 162, 533–542 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Remold, S. K., Rambaut, A. & Turner, P. E. Evolutionary genomics of host adaptation in vesicular stomatitis virus. Mol. Biol. Evol. 25, 1138–1147 (2008).

    Article  CAS  Google Scholar 

  39. Morita, K., Vanderoef, R. & Lenard, J. Phenotypic revertants of temperature-sensitive M protein mutants of vesicular stomatitis virus: sequence analysis and functional characterization. J. Virol. 61, 256–263 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Brun, J. et al. Identification of genetically modified Maraba virus as an oncolytic rhabdovirus. Mol. Ther. 18, 1440–1449 (2010).

    Article  CAS  Google Scholar 

  41. Furió, V. et al. Relationship between within-host fitness and virulence in the vesicular stomatitis virus: correlation with partial decoupling. J. Virol. 86, 12228–12236 (2012).

    Article  Google Scholar 

  42. Sanjuán, R., Moya, A. & Elena, S. F. The distribution of fitness effects caused by single-nucleotide substitutions in an RNAvirus. Proc. Natl Acad. Sci. USA 101, 8396–8401 (2004).

    Article  Google Scholar 

  43. Marcus, P. I., Rodríguez, L. L. & Sekellick, M. J. Interferon induction as a quasispecies marker of vesicular stomatitis virus populations. J. Virol. 72, 542–549 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Pfeiffer, T., Schuster, S. & Bonhoeffer, S. Cooperation and competition in the evolution of ATP-producing pathways. Science 292, 504–507 (2001).

    Article  CAS  Google Scholar 

  45. Stanley, D., Bandara, A., Fraser, S., Chambers, P. J. & Stanley, G. A. The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J. Appl. Microbiol. 109, 13–24 (2010).

    CAS  PubMed  Google Scholar 

  46. Hastie, E. & Grdzelishvili, V. Z. Vesicular stomatitis virus as a flexible platform for oncolytic virotherapy against cancer. J. Gen. Virol. 93, 2529–2545 (2012).

    Article  CAS  Google Scholar 

  47. Clarke, D. K. et al. Live virus vaccines based on a vesicular stomatitis virus (VSV) backbone: standardized template with key considerations for a risk/benefit assessment. Vaccine 34, 6597–6609 (2016).

    Article  CAS  Google Scholar 

  48. Brown, S. P., West, S. A., Diggle, S. P. & Griffin, A. S. Social evolution in micro-organisms and a Trojan horse approach to medical intervention strategies. Phil. Trans. R. Soc. B 364, 3157–3168 (2009).

    Article  Google Scholar 

  49. Lawson, N. D., Stillman, E. A., Whitt, M. A. & Rose, J. K. Recombinant vesicular stomatitis viruses from DNA. Proc. Natl Acad. Sci. USA 92, 4477–4481 (1995).

    Article  CAS  Google Scholar 

  50. Palmero, I. & Serrano, M. Induction of senescence by oncogenic Ras. Methods Enzymol. 333, 247–256 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Noguera for technical assistance with the animal experiments, J. M. Cuevas, R. Garijo and I. Andreu-Moreno for help with the experimental set up, V. Grdzelishvili for the VSV clones, C. Rivas for the MEFs, and S. West and P. Carazo for helpful discussions. This work was funded by ERC Consolidator Grant 724519 Vis-a-Vis to R.S. P.D.-C. was also funded by a Juan de la Cierva Incorporación postdoctoral contract from the Spanish MINECO.

Author information

Authors and Affiliations

Authors

Contributions

P.D.-C. performed the cell culture experiments. E.S.-O. contributed to designing the model. M.D.-M. performed the animal experiments. R.S. conceived the study, formulated the model, analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Rafael Sanjuán.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–6 and Supplementary Table 1.

Reporting Summary

Supplementary Video 1

Progression of a VSV WT–mCherry infection (red) in a MEF culture (phase contrast). The infection spreads until the entire culture is invaded.

Supplementary Video 2

Progression of a VSV Δ51–GFP infection (green) in a MEF culture (phase contrast). The infection spreads from initially infected cells to neighbour cells efficiently, but is subsequently halted by innate immunity.

Supplementary Video 3

Progression of a mixed infection containing both VSV WT–mCherry (red) and VSV Δ51–GFP (green) variants in a MEF culture (phase contrast). The infection spreads from initially infected cells to neighbour cells efficiently, but is subsequently halted by innate immunity. This shows that the presence of the Δ51 variants exerts an inhibitory effect on the WT virus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domingo-Calap, P., Segredo-Otero, E., Durán-Moreno, M. et al. Social evolution of innate immunity evasion in a virus. Nat Microbiol 4, 1006–1013 (2019). https://doi.org/10.1038/s41564-019-0379-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-019-0379-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing