Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of antiviral roles for the exon–junction complex and nonsense-mediated decay in flaviviral infection

Abstract

West Nile virus (WNV) is an emerging mosquito-borne flavivirus, related to dengue virus and Zika virus. To gain insight into host pathways involved in WNV infection, we performed a systematic affinity-tag purification mass spectrometry (APMS) study to identify 259 WNV-interacting human proteins. RNA interference screening revealed 26 genes that both interact with WNV proteins and influence WNV infection. We found that WNV, dengue and Zika virus capsids interact with a conserved subset of proteins that impact infection. These include the exon–junction complex (EJC) recycling factor PYM1, which is antiviral against all three viruses. The EJC has roles in nonsense-mediated decay (NMD), and we found that both the EJC and NMD are antiviral and the EJC protein RBM8A directly binds WNV RNA. To counteract this, flavivirus infection inhibits NMD and the capsid–PYM1 interaction interferes with EJC protein function and localization. Depletion of PYM1 attenuates RBM8A binding to viral RNA, suggesting that WNV sequesters PYM1 to protect viral RNA from decay. Together, these data suggest a complex interplay between the virus and host in regulating NMD and the EJC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generation of the WNV–host protein interaction map.
Fig. 2: The WNV–human PPI network.
Fig. 3: Flaviviral capsid proteins interact with overlapping host factors.
Fig. 4: RNAi screening reveals important roles for host proteins that interact with WNV proteins.
Fig. 5: PYM1 is antiviral against flaviviruses and interacts with flavivirus capsid proteins.
Fig. 6: NMD is inhibited by flaviviruses through targeting of the EJC and the EJC protein RBM8A binds to viral RNA.

Similar content being viewed by others

Data availability

Mass spectrometry data in this study are deposited in the PRIDE database (https://www.ebi.ac.uk/pride/archive/, Project Accession no. PXD011728). A complete list of interaction scores are provided in Supplementary Tables 1, 2 and 5. Gene ontology enrichment analyses are provided in Supplementary Tables 3, 6 and 7. Interactors found in previous flavivirus proteomic or genetic studies are detailed in Supplementary Table 4. RNAi screening data are provided in Supplementary Table 8. Additional supporting data are available from the corresponding authors upon request.

References

  1. Evans, M. V., Murdock, C. C. & Drake, J. M. Anticipating emerging mosquito-borne flaviviruses in the USA: what comes after Zika? Trends. Parasitol. 34, 544–547 (2018).

    Article  Google Scholar 

  2. Lin, D. L. et al. Dengue Virus Hijacks a noncanonical oxidoreductase function of a cellular oligosaccharyltransferase complex. mBio 8, e00939-17 (2017).

    Article  Google Scholar 

  3. Savidis, G. et al. Identification of zika virus and dengue virus dependency factors using functional genomics. Cell Rep. 16, 232–246 (2016).

    Article  CAS  Google Scholar 

  4. Richardson, R. B. et al. A CRISPR screen identifies IFI6 as an ER-resident interferon effector that blocks flavivirus replication. Nat. Microbiol. 3, 1214–1223 (2018).

    Article  CAS  Google Scholar 

  5. Ma, H. et al. A CRISPR-based screen identifies genes essential for West-Nile-Virus-induced cell death. Cell Rep. 12, 673–683 (2015).

    Article  CAS  Google Scholar 

  6. Marceau, C. D. et al. Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens. Nature 535, 159–163 (2016).

    Article  CAS  Google Scholar 

  7. Zhang, R. et al. A CRISPR screen defines a signal peptide processing pathway required by flaviviruses. Nature 535, 164–168 (2016).

    Article  CAS  Google Scholar 

  8. Krishnan, M. N. et al. RNA interference screen for human genes associated with West Nile virus infection. Nature 455, 242–245 (2008).

    Article  CAS  Google Scholar 

  9. Yasunaga, A. et al. Genome-wide RNAi screen identifies broadly-acting host factors that inhibit arbovirus infection. PLoS Pathog. 10, e1003914 (2014).

    Article  Google Scholar 

  10. Davis, Z. H. et al. Global mapping of herpesvirus-host protein complexes reveals a transcription strategy for late genes. Mol. Cell 57, 349–360 (2015).

    Article  CAS  Google Scholar 

  11. Heaton, N. S. et al. Targeting viral proteostasis limits Influenza Virus, HIV, and Dengue Virus infection. Immunity 44, 46–58 (2016).

    Article  CAS  Google Scholar 

  12. Jager, S. et al. Global landscape of HIV–human protein complexes. Nature 481, 365–370 (2011).

    Article  Google Scholar 

  13. Jager, S. et al. Vif hijacks CBF-beta to degrade APOBEC3G and promote HIV-1 infection. Nature 481, 371–375 (2011).

    Article  Google Scholar 

  14. Ramage, H. R. et al. A combined proteomics/genomics approach links hepatitis C virus infection with nonsense-mediated mRNA decay. Mol. Cell 57, 329–340 (2015).

    Article  CAS  Google Scholar 

  15. Sowa, M. E., Bennett, E. J., Gygi, S. P. & Harper, J. W. Defining the human deubiquitinating enzyme interaction landscape. Cell 138, 389–403 (2009).

    Article  CAS  Google Scholar 

  16. Bono, F. et al. Molecular insights into the interaction of PYM with the Mago-Y14 core of the exon junction complex. EMBO Rep. 5, 304–310 (2004).

    Article  CAS  Google Scholar 

  17. Diem, M. D., Chan, C. C., Younis, I. & Dreyfuss, G. PYM binds the cytoplasmic exon–junction complex and ribosomes to enhance translation of spliced mRNAs. Nat. Struct. Mol. Biol. 14, 1173–1179 (2007).

    Article  CAS  Google Scholar 

  18. Gehring, N. H., Lamprinaki, S., Kulozik, A. E. & Hentze, M. W. Disassembly of exon junction complexes by PYM. Cell 137, 536–548 (2009).

    Article  CAS  Google Scholar 

  19. Hug, N., Longman, D. & Caceres, J. F. Mechanism and regulation of the nonsense-mediated decay pathway. Nucleic Acids Res. 44, 1483–1495 (2016).

    Article  Google Scholar 

  20. Lykke-Andersen, J., Shu, M. D. & Steitz, J. A. Communication of the position of exon–exon junctions to the mRNA surveillance machinery by the protein RNPS1. Science 293, 1836–1839 (2001).

    Article  CAS  Google Scholar 

  21. Gehring, N. H., Neu-Yilik, G., Schell, T., Hentze, M. W. & Kulozik, A. E. Y14 and hUpf3b form an NMD-activating complex. Mol. Cell 11, 939–949 (2003).

    Article  CAS  Google Scholar 

  22. Neufeldt, C. J., Cortese, M., Acosta, E. G. & Bartenschlager, R. Rewiring cellular networks by members of the Flaviviridae family. Nat. Rev. Microbiol. 16, 125–142 (2018).

    Article  CAS  Google Scholar 

  23. Agrawal, T., Schu, P. & Medigeshi, G. R. Adaptor protein complexes-1 and 3 are involved at distinct stages of flavivirus life-cycle. Sci. Rep. 3, 1813 (2013).

    Article  Google Scholar 

  24. De Maio, F. A. et al. The Dengue Virus NS5 protein intrudes in the cellular spliceosome and modulates splicing. PLoS Pathog. 12, e1005841 (2016).

    Article  Google Scholar 

  25. Chatel-Chaix, L. et al. Dengue Virus perturbs mitochondrial morphodynamics to dampen innate immune responses. Cell Host Microbe 20, 342–356 (2016).

    Article  CAS  Google Scholar 

  26. Lopez-Denman, A. J. & Mackenzie, J. M. The importance of the nucleus during flavivirus replication. Viruses 9, 14 (2017).

    Article  Google Scholar 

  27. Colpitts, T. M., Barthel, S., Wang, P. & Fikrig, E. Dengue virus capsid protein binds core histones and inhibits nucleosome formation in human liver cells. PLoS ONE 6, e24365 (2011).

    Article  CAS  Google Scholar 

  28. Balinsky, C. A. et al. Nucleolin interacts with the dengue virus capsid protein and plays a role in formation of infectious virus particles. J. Virol. 87, 13094–13106 (2013).

    Article  Google Scholar 

  29. Coyaud, E. et al. Global interactomics uncovers extensive organellar targeting by Zika virus. Mol. Cell. Proteomics 17, 2242–2255 (2018).

    Article  CAS  Google Scholar 

  30. Hafirassou, M. L. et al. A global interactome map of the dengue virus NS1 identifies virus restriction and dependency host factors. Cell Rep. 22, 1364 (2018).

    Article  CAS  Google Scholar 

  31. Scaturro, P. et al. An orthogonal proteomic survey uncovers novel Zika virus host factors. Nature 561, 253–257 (2018).

    Article  CAS  Google Scholar 

  32. Balistreri, G. et al. The host nonsense-mediated mRNA decay pathway restricts Mammalian RNA virus replication. Cell Host Microbe 16, 403–411 (2014).

    Article  CAS  Google Scholar 

  33. Fontaine, K. A. et al. The cellular NMD pathway restricts zika virus infection and is targeted by the viral capsid protein. mBio 9, e02126-18 (2018).

    Article  Google Scholar 

  34. Sureau, A., Gattoni, R., Dooghe, Y., Stevenin, J. & Soret, J. SC35 autoregulates its expression by promoting splicing events that destabilize its mRNAs. EMBO J. 20, 1785–1796 (2001).

    Article  CAS  Google Scholar 

  35. Mendell, J. T., Sharifi, N. A., Meyers, J. L., Martinez-Murillo, F. & Dietz, H. C. Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise. Nat. Genet. 36, 1073–1078 (2004).

    Article  CAS  Google Scholar 

  36. Toma, K. G., Rebbapragada, I., Durand, S. & Lykke-Andersen, J. Identification of elements in human long 3’ UTRs that inhibit nonsense-mediated decay. RNA 21, 887–897 (2015).

    Article  CAS  Google Scholar 

  37. Gehring, N. H., Lamprinaki, S., Hentze, M. W. & Kulozik, A. E. The hierarchy of exon–junction complex assembly by the spliceosome explains key features of mammalian nonsense-mediated mRNA decay. PLoS Biol. 7, e1000120 (2009).

    Article  Google Scholar 

  38. Baird, T. D. et al. ICE1 promotes the link between splicing and nonsense-mediated mRNA decay. eLife 7, e33178 (2018).

    Article  Google Scholar 

  39. Singh, K. K., Wachsmuth, L., Kulozik, A. E. & Gehring, N. H. Two mammalian MAGOH genes contribute to exon junction complex composition and nonsense-mediated decay. RNA Biol. 10, 1291–1298 (2013).

    Article  CAS  Google Scholar 

  40. Mao, H. et al. Rbm8a haploinsufficiency disrupts embryonic cortical development resulting in microcephaly. J. Neurosci. 35, 7003–7018 (2015).

    Article  CAS  Google Scholar 

  41. Mao, H., McMahon, J. J., Tsai, Y. H., Wang, Z. & Silver, D. L. Haploinsufficiency for core exon junction complex components disrupts embryonic neurogenesis and causes p53-mediated microcephaly. PLoS Genet. 12, e1006282 (2016).

    Article  Google Scholar 

  42. Silver, D. L. et al. The exon junction complex component Magoh controls brain size by regulating neural stem cell division. Nat. Neurosci. 13, 551–558 (2010).

    Article  CAS  Google Scholar 

  43. Platt, D. J. et al. Zika virus-related neurotropic flaviviruses infect human placental explants and cause fetal demise in mice.Sci. Transl. Med. 10, eaao7090 (2018).

    Article  Google Scholar 

  44. Miner, J. J. et al. Zika virus infection during pregnancy in mice causes placental damage and fetal demise. Cell 165, 1081–1091 (2016).

    Article  CAS  Google Scholar 

  45. Garcia, D., Garcia, S. & Voinnet, O. Nonsense-mediated decay serves as a general viral restriction mechanism in plants. Cell Host Microbe 16, 391–402 (2014).

    Article  CAS  Google Scholar 

  46. Mocquet, V. et al. The human T-lymphotropic virus type 1 tax protein inhibits nonsense-mediated mRNA decay by interacting with INT6/EIF3E and UPF1. J. Virol. 86, 7530–7543 (2012).

    Article  CAS  Google Scholar 

  47. Boyne, J. R., Jackson, B. R., Taylor, A., Macnab, S. A. & Whitehouse, A. Kaposi’s sarcoma-associated herpesvirus ORF57 protein interacts with PYM to enhance translation of viral intronless mRNAs. EMBO J. 29, 1851–1864 (2010).

    Article  CAS  Google Scholar 

  48. Serquina, A. K. et al. UPF1 is crucial for the infectivity of human immunodeficiency virus type 1 progeny virions. J. Virol. 87, 8853–8861 (2013).

    Article  CAS  Google Scholar 

  49. Ziehr, B., Lenarcic, E., Cecil, C. & Moorman, N. J. The eIF4AIII RNA helicase is a critical determinant of human cytomegalovirus replication. Virology 489, 194–201 (2016).

    Article  CAS  Google Scholar 

  50. Rausch, K. et al. Screening bioactives reveals nanchangmycin as a broad spectrum antiviral active against zika virus. Cell Rep. 18, 804–815 (2017).

    Article  CAS  Google Scholar 

  51. Verschueren, E. et al. Scoring large-scale affinity purification mass spectrometry datasets with MiST. Curr. Protoc. Bioinformatics 49, 8 19 11–16 (2015).

    Google Scholar 

  52. Giurgiu, M. et al. CORUM: the comprehensive resource of mammalian protein complexes-2019. Nucleic Acids Res. 47, 559–563 (2018).

    Article  Google Scholar 

  53. Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P. L. & Ideker, T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27, 431–432 (2011).

    Article  CAS  Google Scholar 

  54. Hochberg, Y. & Benjamini, Y. More powerful procedures for multiple significance testing. Stat. Med. 9, 811–818 (1990).

    Article  CAS  Google Scholar 

  55. Birmingham, A. et al. Statistical methods for analysis of high-throughput RNA interference screens. Nat. Methods 6, 569–575 (2009).

    Article  CAS  Google Scholar 

  56. Yang, X. et al. A public genome-scale lentiviral expression library of human ORFs. Nat. Methods 8, 659–661 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Cherry, Krogan and Ramage laboratories for discussion, advice and reagents. We thank the University of Pennsylvania High-Throughput Screening Core for providing reagents and technical expertise. We thank J. To for virus preparations, D. Tatomer for RNA analyses and M. Shales for graphical support. This work was supported by The American Liver Foundation Liver Scholar Award and the Creative and Novel Ideas in HIV Research Award to H.R.; NIH grants nos. R01AI074951 and RO1AI122749 and the Burroughs Wellcome Investigators in the Pathogenesis of Infectious Disease Award to S.C.; and NIH grants nos. U19 AI118610, U19 AI135990 and P50 GM082250 to N.J.K.

Author information

Authors and Affiliations

Authors

Contributions

H.R. and G.M.J. performed affinity purification of flaviviral proteins. B.W.N. and J.R.J. performed mass spectrometry. J.V.D., P.S.S. and J.R.J. performed proteomic scoring and bioinformatics analyses. H.R. and M.L. performed immunostaining and microscopy. H.R., M.L., B.T. and G.K. performed RNAi, infections, RT–qPCR and western blotting. M.L. performed co-immunoprecipitation assays, cell fractionation and RNA immunoprecipitations. N.W. and M.D. performed TCID50 assays. H.R., S.C. and N.J.K. supervised research. H.R. and S.C. wrote the manuscript with input from N.J.K. and M.L.

Corresponding authors

Correspondence to Nevan J. Krogan, Sara Cherry or Holly Ramage.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–10 and legends for Supplementary Tables.

Reporting Summary

Supplementary Table 1

WNV-interacting proteins identified by AP/MS.

Supplementary Table 2

High confidence WNV-host protein–protein interactions.

Supplementary Table 3

GO Enrichment for WNV Interactome.

Supplementary Table 4

Overlap of WNV interactome with previous flavivirus AP-MS and genetic screens.

Supplementary Table 5

Overlap of WNV capsid interactors with DENV and ZIKV capsids.

Supplementary Table 6

GO Enrichment for WNV capsid interactors.

Supplementary Table 7

Enrichment of WNV-interactor localization and GO terms for individual WNV bait proteins.

Supplementary Table 8

Complete RNAi screening results (robust z-scores).

Supplementary Table 9

siRNAs used in this study.

Supplementary Table 10

qPCR primers used in this study.

Supplementary Table 11

Complete table of precise P-values for all statistical analyses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Johnson, J.R., Truong, B. et al. Identification of antiviral roles for the exon–junction complex and nonsense-mediated decay in flaviviral infection. Nat Microbiol 4, 985–995 (2019). https://doi.org/10.1038/s41564-019-0375-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-019-0375-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing