Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Consistent trade-offs in fungal trait expression across broad spatial scales

Abstract

Fungi are the primary agents of terrestrial decomposition, yet our understanding of fungal biogeography lags far behind that of plants, animals and bacteria. Here, we use a trait-based approach to quantify the niches of 23 species of basidiomycete wood decay fungi from across North America, and explore the linkages among functional trait expression, climate and phylogeny. Our analysis reveals a fundamental trade-off between abiotic stress tolerance and competitive ability, whereby fungi with wide thermal and moisture niches exhibit lower displacement ability. The magnitude of this dominance-tolerance trade-off is partially related to the environmental conditions under which the fungi were collected, with thermal niche traits exhibiting the strongest climate relationships. Nevertheless, moisture and thermal dominance-tolerance patterns exhibited contrasting phylogenetic signals, suggesting that these trends are influenced by a combination of niche sorting along taxonomic lines in tandem with acclimation and adaptation at the level of the individual. Collectively, our work reveals key insight into the life history strategies of saprotrophic fungi, demonstrating consistent trait trade-offs across broad spatial scales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fungal isolates and their niches.
Fig. 2: Correlations between niche traits, physiological growth traits and performance traits.
Fig. 3: PCA analysis provides evidence of a dominance-tolerance trade-off in trait space.
Fig. 4: Visualizing the dominance-tolerance trade-off across broad spatial scales.

Similar content being viewed by others

Code availability

All code needed to reproduce these results can be obtained from https://github.com/dsmaynard/fungal_biogeography.

Data availability

Data are archived in a dedicated GitHub repository: https://github.com/dsmaynard/fungal_biogeography. The ITS and LSU sequences were previously deposited in GenBank under accession numbers KX065932KX065968 and KX065969KX066002.

References

  1. Treseder, K. K. & Lennon, J. T. Fungal traits that drive ecosystem dynamics on land. Microbiol. Mol. Biol. Rev. 9, 243–262 (2015).

    Article  Google Scholar 

  2. Crowther, T. W. et al. Untangling the fungal niche: the trait-based approach. Front. Microbiol. 5, 579 (2014).

    Article  Google Scholar 

  3. Bradford, M. A. et al. Climate fails to predict wood decomposition at regional scales. Nat. Clim. Change 4, 625–630 (2014).

    Article  CAS  Google Scholar 

  4. Ottosson, E. et al. Species associations during the succession of wood-inhabiting fungal communities. Fungal Ecol. 11, 17–28 (2014).

    Article  Google Scholar 

  5. Tedersoo, L. et al. Fungal biogeography. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).

  6. Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).

    Article  CAS  Google Scholar 

  7. Glassman, S. I., Wang, I. J. & Bruns, T. D. Environmental filtering by pH and soil nutrients drives community assembly in fungi at fine spatial scales. Mol. Ecol. 26, 6960–6973 (2017).

    Article  CAS  Google Scholar 

  8. Boddy, L. Fungal community ecology and wood decomposition processes in angiosperms: from standing tree to complete decay of coarse woody debris. Ecol. Bull. 49, 43–56 (2001).

    Google Scholar 

  9. van der Wal, A. et al. Fungal biomass development in a chronosequence of land abandonment. Soil Biol. Biochem. 38, 51–60 (2006).

    Article  CAS  Google Scholar 

  10. Meyer, K. M. et al. Why do microbes exhibit weak biogeographic patterns? ISME J. 12, 1404–1413 (2018).

    Article  Google Scholar 

  11. Meiser, A., Bálint, M. & Schmitt, I. Meta-analysis of deep-sequenced fungal communities indicates limited taxon sharing between studies and the presence of biogeographic patterns. New Phytol. 201, 623–635 (2014).

    Article  CAS  Google Scholar 

  12. Kivlin, S. N., Hawkes, C. V. & Treseder, K. K. Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 43, 2294–2303 (2011).

    Article  CAS  Google Scholar 

  13. Aguilar-Trigueros, C. A., Powell, J. R., Anderson, I. C., Antonovics, J. & Rillig, M. C. Ecological understanding of root-infecting fungi using trait-based approaches. Trends Plant Sci. 19, 432–438 (2014).

    Article  CAS  Google Scholar 

  14. Lennon, J. T., Aanderud, Z. T., Lehmkuhl, B. K. & Schoolmaster, D. R.Jr. Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology 93, 1867–1879 (2012).

    Article  Google Scholar 

  15. Maynard, D. S., Crowther, T. W. & Bradford, M. A. Fungal interactions reduce carbon use efficiency. Ecol. Lett. 20, 1034–1042 (2017).

    Article  Google Scholar 

  16. Maynard, D. S. et al. Diversity begets diversity in competition for space. Nat. Ecol. Evol. 1, 156 (2017).

    Article  Google Scholar 

  17. Maynard, D. S., Crowther, T. W. & Bradford, M. A. Competitive network determines the direction of the diversity-function relationship. Proc. Natl Acad. Sci. USA 114, 11464–11469 (2017).

    Article  CAS  Google Scholar 

  18. Crowther, T. W., Boddy, L. & Maynard, D. S. The use of artificial media in fungal ecology. Fungal Ecol. 32, 87–91 (2018).

    Article  Google Scholar 

  19. Crowther, T. W. & Bradford, M. A. Thermal acclimation in widespread heterotrophic soil microbes. Ecol. Lett. 16, 469–477 (2013).

    Article  Google Scholar 

  20. Hochachka, P. W. & Somero, G. N. Biochemical Adaptation: Mechanism and Process in Physiological Evolution (Oxford Univ. Press, New York, 2002).

  21. Crowther, T. W., Boddy, L. & Jones, T. H. Species-specific effects of soil fauna on fungal foraging and decomposition. Oecologia 167, 535–545 (2011).

    Article  Google Scholar 

  22. Boddy, L. Saprotrophic cord-forming fungi: warfare strategies and other ecological aspects. Mycol. Res. 97, 641–655 (1993).

    Article  Google Scholar 

  23. Aguilar-Trigueros, C. A., Rillig, M. C. & Crowther, T. W. Applying allometric theory to fungi. ISME J. 11, 2175–2180 (2017).

    Article  Google Scholar 

  24. Gasch, A. P. Comparative genomics of the environmental stress response in ascomycete fungi. Yeast 24, 961–976 (2007).

    Article  CAS  Google Scholar 

  25. Isidorov, V., Tyszkiewicz, Z. & Pirożnikow, E. Fungal succession in relation to volatile organic compounds emissions from Scots pine and Norway spruce leaf litter-decomposing fungi. Atmos. Environ. 131, 301–306 (2016).

    Article  CAS  Google Scholar 

  26. El Ariebi, N., Hiscox, J., Scriven, S. A., Müller, C. T. & Boddy, L. Production and effects of volatile organic compounds during interspecific interactions. Fungal Ecol. 20, 144–154 (2016).

    Article  Google Scholar 

  27. Hiscox, J., Baldrian, P., Rogers, H. J. & Boddy, L. Changes in oxidative enzyme activity during interspecific mycelial interactions involving the white-rot fungus Trametes versicolor. Fungal Genet. Biol. 47, 562–571 (2010).

    Article  CAS  Google Scholar 

  28. Junninen, K., Similä, M., Kouki, J. & Kotiranta, H. Assemblages of wood-inhabiting fungi along the gradients of succession and naturalness in boreal pine-dominated forests in Fennoscandia. Ecography 29, 75–83 (2006).

    Article  Google Scholar 

  29. Lindahl, B. D. & Finlay, R. D. Activities of chitinolytic enzymes during primary and secondary colonization of wood by basidiomycetous fungi. New Phytol. 169, 389–397 (2006).

    Article  CAS  Google Scholar 

  30. Revell, L. J. Phylogenetic signal and linear regression on species data. Methods Ecol. Evol. 1, 319–329 (2010).

    Article  Google Scholar 

  31. Loescher, H., Ayres, E., Duffy, P., Luo, H. & Brunke, M. Spatial variation in soil properties among North American ecosystems and guidelines for sampling designs. PLoS ONE 9, e83216 (2014).

  32. Bradford, M. A. et al. A test of the hierarchical model of litter decomposition. Nat. Ecol. Evol. 1, 1836–1845 (2017).

    Article  Google Scholar 

  33. Ellison, C. E. et al. Population genomics and local adaptation in wild isolates of a model microbial eukaryote. Proc. Natl Acad. Sci. USA 108, 2831–2836 (2011).

    Article  CAS  Google Scholar 

  34. Grime, J. P. Vegetation classification by reference to strategies. Nature 250, 26–31 (1974).

    Article  Google Scholar 

  35. Pérez-Harguindeguy, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234 (2013).

    Article  Google Scholar 

  36. Ramirez, M. L., Chulze, S. N. & Magan, N. Impact of osmotic and matric water stress on germination, growth, mycelial water potentials and endogenous accumulation of sugars and sugar alcohols in Fusarium graminearum. Mycologia 96, 470–478 (2004).

    Article  CAS  Google Scholar 

  37. Boddy, L. Effect of temperature and water potential on growth rate of wood-rotting basidiomycetes. Trans. Br. Mycol. Soc. 80, 141–149 (1983).

    Article  Google Scholar 

  38. Jurado, M., Marín, P., Magan, N. & González-Jaén, M. T. Relationship between solute and matric potential stress, temperature, growth, and FUM1 gene expression in two Fusarium verticillioides strains from Spain. Appl. Environ. Microbiol. 74, 2032–2036 (2008).

    Article  CAS  Google Scholar 

  39. Molloy, S. Sugar Transport and Water Relations of Agaricus bisporus. PhD thesis, Cranfield Univ. (2004).

  40. Elo, A. E. The Rating of Chess Players, Past and Present (Arco Pub., New York, 1986).

  41. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  42. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  Google Scholar 

  43. Tamura, K. et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011).

    Article  CAS  Google Scholar 

  44. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289–300 (1995).

    Google Scholar 

  45. Chevan, A. & Sutherland, M. Hierarchical partitioning. Am. Stat. 45, 90–96 (1991).

    Google Scholar 

  46. Lustenhouwer, N., Moran, E. V. & Levine, J. M. Trait correlations equalize spread velocity across plant life histories. Glob. Ecol. Biogeogr. 26, 1398–1407 (2017).

    Article  Google Scholar 

  47. Tuanmu, M. N. & Jetz, W. A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 23, 1031–1045 (2014).

    Article  Google Scholar 

  48. Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World map of the Köppen–Geiger climate classification updated. Meteorol. Z. 15, 259–263 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Thomas, A. Neupane and E. Karlsen-Ayala for laboratory assistance, and L. Boddy for discussions throughout this study. This work was supported by grants to T.W.C. from DOB Ecology, Plant-for-the-Planet, the Marie Skłodowska-Curie Actions Fellowship and the German Federal Ministry for Economic Cooperation and Development; and by grants to M.A.B. and D.S.M. from the US National Science Foundation (grant nos. DEB-1457614 and DEB-1601036).

Author information

Authors and Affiliations

Authors

Contributions

The study was conceived by T.W.C. The experimental work was designed by D.S.M. and T.W.C. and conducted by T.W.C., D.S.M., K.R.C., D.L. and J.G. The statistical analyses were performed by D.S.M., T.W.C., D.A.T., P.J.T. and D.M.W. The manuscript was written by D.S.M., T.W.C. and M.A.B., with input from all authors.

Corresponding author

Correspondence to Daniel S. Maynard.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Materials or Methods, Supplementary References, Supplementary Tables 1–6 and Supplementary Figures 1 and 2.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maynard, D.S., Bradford, M.A., Covey, K.R. et al. Consistent trade-offs in fungal trait expression across broad spatial scales. Nat Microbiol 4, 846–853 (2019). https://doi.org/10.1038/s41564-019-0361-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-019-0361-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing