Review Article | Published:

Drug repurposing for antimicrobial discovery

Nature Microbiologyvolume 4pages565577 (2019) | Download Citation

Abstract

Antimicrobial resistance continues to be a public threat on a global scale. The ongoing need to develop new antimicrobial drugs that are effective against multi-drug-resistant pathogens has spurred the research community to invest in various drug discovery strategies, one of which is drug repurposing—the process of finding new uses for existing drugs. While still nascent in the antimicrobial field, the approach is gaining traction in both the public and private sector. While the approach has particular promise in fast-tracking compounds into clinical studies, it nevertheless has substantial obstacles to success. This Review covers the art of repurposing existing drugs for antimicrobial purposes. We discuss enabling screening platforms for antimicrobial discovery and present encouraging findings of novel antimicrobial therapeutic strategies. Also covered are general advantages of repurposing over de novo drug development and challenges of the strategy, including scientific, intellectual property and regulatory issues.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    O’Neill, J. Review on Antimicrobial Resistance: tackling a crisis for the health and wealth of nations (HM Government, 2014).

  2. 2.

    Rossolini, G. M., Arena, F., Pecile, P. & Pollini, S. Update on the antibiotic resistance crisis. Curr. Opin. Pharmacol. 18, 56–60 (2014).

  3. 3.

    Tanwar, J., Das, S., Fatima, Z. & Hameed, S. Multidrug resistance: an emerging crisis. Interdiscip. Perspect. Infect. Dis. 2014, 541340 (2014).

  4. 4.

    Ariey, F. et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505, 50–55 (2014).

  5. 5.

    Kauffman, C. A., Pappas, P. G. & Patterson, T. F. Fungal infections associated with contaminated methylprednisolone injections. New Engl. J. Med. 368, 2495–2500 (2013).

  6. 6.

    McCarthy, M. Hospital transmitted Candida auris infections confirmed in the US. BMJ 355, i5978 (2016).

  7. 7.

    Carroll, M. W. et al. Temporal and spatial analysis of the 2014–2015 Ebola virus outbreak in West Africa. Nature 524, 97–101 (2015).

  8. 8.

    Kreuels, B. et al. A case of severe Ebola virus infection complicated by gram-negative septicemia. New Engl. J. Med. 371, 2394–2401 (2014).

  9. 9.

    Snitkin, E. S. et al. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci. Transl. Med. 4, 148ra116 (2012).

  10. 10.

    Liu, Y. Y. et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16, 161–168 (2016).

  11. 11.

    Hughes, D. & Karlen, A. Discovery and preclinical development of new antibiotics. Upsala J. Med. Sci. 119, 162–169 (2014).

  12. 12.

    Payne, D. J., Gwynn, M. N., Holmes, D. J. & Pompliano, D. L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov. 6, 29–40 (2007).

  13. 13.

    Waring, M. J. et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat. Rev. Drug Discov. 14, 475–486 (2015).

  14. 14.

    Langedijk, J., Mantel-Teeuwisse, A. K., Slijkerman, D. S. & Schutjens, M. H. Drug repositioning and repurposing: terminology and definitions in literature. Drug Discov. Today 20, 1027–1034 (2015).

  15. 15.

    Paolini, G. V., Shapland, R. H., van Hoorn, W. P., Mason, J. S. & Hopkins, A. L. Global mapping of pharmacological space. Nat. Biotechnol. 24, 805–815 (2006).

  16. 16.

    Glicksberg, B. S. et al. An integrative pipeline for multi-modal discovery of disease relationships. Pac. Symp. Biocomput. 20, 407–418 (2015).

  17. 17.

    Moroney, J. et al. Phase I study of the antiangiogenic antibody bevacizumab and the mTOR/hypoxia-inducible factor inhibitor temsirolimus combined with liposomal doxorubicin: tolerance and biological activity. Clin. Cancer Res. 18, 5796–5805 (2012).

  18. 18.

    Moroney, J. W. et al. A phase I trial of liposomal doxorubicin, bevacizumab, and temsirolimus in patients with advanced gynecologic and breast malignancies. Clin. Cancer Res. 17, 6840–6846 (2011).

  19. 19.

    Ashburn, T. T. & Thor, K. B. Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 3, 673–683 (2004).

  20. 20.

    Chong, C. R. & Sullivan, D. J. Jr. New uses for old drugs. Nature 448, 645–646 (2007).

  21. 21.

    Norrby, S. R. et al. Lack of development of new antimicrobial drugs: a potential serious threat to public health. Lancet Infect. Dis. 5, 115–119 (2005).

  22. 22.

    Kepplinger, E. E. FDA’s expedited approval mechanisms for new drug products. Biotechnol. Law Rep. 34, 15–37 (2015).

  23. 23.

    Hernandez, J. J. et al. Giving drugs a second chance: overcoming regulatory and financial hurdles in repurposing approved drugs as cancer therapeutics. Front. Oncol. 7, 273 (2017).

  24. 24.

    Oprea, T. I. et al. Drug repurposing from an academic perspective. Drug Discov. Today Ther. Strateg. 8, 61–69 (2011).

  25. 25.

    Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov. 9, 203–214 (2010).

  26. 26.

    Oprea, T. I. & Overington, J. P. Computational and practical aspects of drug repositioning. Assay Drug Dev. Techn. 13, 299–306 (2015).

  27. 27.

    Sun, W., Sanderson, P. E. & Zheng, W. Drug combination therapy increases successful drug repositioning. Drug Discov. Today 21, 1189–1195 (2016).

  28. 28.

    Zeitlinger, M. A. et al. Impact of plasma protein binding on antimicrobial activity using time-killing curves. J. Antimicrob. Chemoth. 54, 876–880 (2004).

  29. 29.

    Burian, A. et al. Plasma protein binding may reduce antimicrobial activity by preventing intra-bacterial uptake of antibiotics, for example clindamycin. J. Antimicrob. Chemoth. 66, 134–137 (2011).

  30. 30.

    Schulz, M., Iwersen-Bergmann, S., Andresen, H. & Schmoldt, A. Therapeutic and toxic blood concentrations of nearly 1,000 drugs and other xenobiotics. Crit. Care 16, R136 (2012).

  31. 31.

    Schulz, M. & Schmoldt, A. Therapeutic and toxic blood concentrations of more than 800 drugs and other xenobiotics. Pharmazie 58, 447–474 (2003).

  32. 32.

    Mullard, A. 2013 FDA drug approvals. Nat. Rev. Drug Discov. 13, 85–89 (2014).

  33. 33.

    Lin, F. & Wang, S. J. Identification of the factors that result in obviousness rulings for biotech patents: an updated analysis of the US Federal Circuit decisions after KSR. Hum. Vacc. Immunother. 9, 2490–2495 (2013).

  34. 34.

    Wittich, C. M., Burkle, C. M. & Lanier, W. L. Ten common questions (and their answers) about off-label drug use. Mayo Clin. Proc. 87, 982–990 (2012).

  35. 35.

    Morello, L. More cuts loom for US science. Nature 501, 147–148 (2013).

  36. 36.

    Pantziarka, P. et al. The repurposing drugs in oncology (ReDO) project. eCancermedicalscience 8, 442 (2014).

  37. 37.

    Issa, N. T., Kruger, J., Byers, S. W. & Dakshanamurthy, S. Drug repurposing a reality: from computers to the clinic. Expert Rev. Clin. Pharm. 6, 95–97 (2013).

  38. 38.

    Bessoff, K., Sateriale, A., Lee, K. K. & Huston, C. D. Drug repurposing screen reveals FDA-approved inhibitors of human HMG-CoA reductase and isoprenoid synthesis that block Cryptosporidium parvum growth. Antimicrob. Agents Ch. 57, 1804–1814 (2013).

  39. 39.

    Debnath, A. et al. A high-throughput drug screen for Entamoeba histolytica identifies a new lead and target. Nat. Med. 18, 956–960 (2012).

  40. 40.

    Lucumi, E. et al. Discovery of potent small-molecule inhibitors of multidrug-resistant Plasmodium falciparum using a novel miniaturized high-throughput luciferase-based assay. Antimicrob. Agents Ch. 54, 3597–3604 (2010).

  41. 41.

    da Cruz, F. P. et al. Drug screen targeted at Plasmodium liver stages identifies a potent multistage antimalarial drug. J. Infect. Dis. 205, 1278–1286 (2012).

  42. 42.

    Chong, C. R., Chen, X., Shi, L., Liu, J. O. & Sullivan, D. J. Jr. A clinical drug library screen identifies astemizole as an antimalarial agent. Nat. Chem. Biol. 2, 415–416 (2006).

  43. 43.

    Chen, C. Z. et al. High-throughput Giardia lamblia viability assay using bioluminescent ATP content measurements. Antimicrob. Agents Ch. 55, 667–675 (2011).

  44. 44.

    Chockalingam, K., Simeon, R. L., Rice, C. M. & Chen, Z. A cell protection screen reveals potent inhibitors of multiple stages of the hepatitis C virus life cycle. Proc. Natl Acad. Sci. USA 107, 3764–3769 (2010).

  45. 45.

    Dyall, J. et al. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob. Agents Ch. 58, 4885–4893 (2014).

  46. 46.

    Gastaminza, P., Whitten-Bauer, C. & Chisari, F. V. Unbiased probing of the entire hepatitis C virus life cycle identifies clinical compounds that target multiple aspects of the infection. Proc. Natl Acad. Sci. USA 107, 291–296 (2010).

  47. 47.

    He, S. et al. Repurposing of the antihistamine chlorcyclizine and related compounds for treatment of hepatitis C virus infection. Sci. Transl Med. 7, 282ra249 (2015).

  48. 48.

    Madrid, P. B. et al. Evaluation of Ebola virus inhibitors for drug repurposing. ACS Infect. Dis. 1, 317–326 (2015).

  49. 49.

    Johansen, L. M. et al. A screen of approved drugs and molecular probes identifies therapeutics with anti-Ebola virus activity. Sci. Transl Med. 7, 290ra289 (2015).

  50. 50.

    Kouznetsova, J. et al. Identification of 53 compounds that block Ebola virus-like particle entry via a repurposing screen of approved drugs. Emerg. Microbes Infect. 3, e84 (2014).

  51. 51.

    Barrows, N. J. et al. A screen of FDA-approved drugs for inhibitors of Zika virus infection. Cell Host Microbe 20, 259–270 (2016).

  52. 52.

    Butts, A. et al. A repurposing approach identifies off-patent drugs with fungicidal cryptococcal activity, a common structural chemotype, and pharmacological properties relevant to the treatment of cryptococcosis. Eukaryot. Cell 12, 278–287 (2013).

  53. 53.

    Krysan, D. J. & Didone, L. A high-throughput screening assay for small molecules that disrupt yeast cell integrity. J. Biomol. Screen. 13, 657–664 (2008).

  54. 54.

    Siles, S. A., Srinivasan, A., Pierce, C. G., Lopez-Ribot, J. L. & Ramasubramanian, A. K. High-throughput screening of a collection of known pharmacologically active small compounds for identification of Candida albicans biofilm inhibitors. Antimicrob. Agents Ch. 57, 3681–3687 (2013).

  55. 55.

    Zhai, B. et al. Polymyxin B, in combination with fluconazole, exerts a potent fungicidal effect. J. Antimicrob. Chemoth. 65, 931–938 (2010).

  56. 56.

    Chopra, S. et al. Repurposing FDA-approved drugs to combat drug-resistant Acinetobacter baumannii. J. Antimicrob. Chemoth 65, 2598–2601 (2010).

  57. 57.

    Jacobs, A. C. et al. Adenylate kinase release as a high-throughput-screening-compatible reporter of bacterial lysis for identification of antibacterial agents. Antimicrob. Agents Ch. 57, 26–36 (2013).

  58. 58.

    Pothineni, V. R. et al. Identification of new drug candidates against Borrelia burgdorferi using high-throughput screening. Drug Des. Dev. Ther. 10, 1307–1322 (2016).

  59. 59.

    Sun, W. et al. Rapid antimicrobial susceptibility test for identification of new therapeutics and drug combinations against multidrug-resistant bacteria. Emerg. Microbes Infec. 5, e116 (2016).

  60. 60.

    Younis, W., Thangamani, S. & Seleem, M. N. Repurposing non-antimicrobial drugs and clinical molecules to treat bacterial infections. Curr. Pharm. Design 21, 4106–4111 (2015).

  61. 61.

    Schenone, M., Dancik, V., Wagner, B. K. & Clemons, P. A. Target identification and mechanism of action in chemical biology and drug discovery. Nat. Chem. Biol. 9, 232–240 (2013).

  62. 62.

    Zheng, W., Thorne, N. & McKew, J. C. Phenotypic screens as a renewed approach for drug discovery. Drug Discov. Today 18, 1067–1073 (2013).

  63. 63.

    Gregori-Puigjane, E. et al. Identifying mechanism-of-action targets for drugs and probes. Proc. Natl Acad. Sci. USA 109, 11178–11183 (2012).

  64. 64.

    Farha, M. A. & Brown, E. D. Unconventional screening approaches for antibiotic discovery. Ann. NY Acad. Sci. 1354, 54–66 (2015).

  65. 65.

    Farha, M. A. et al. Antagonism screen for inhibitors of bacterial cell wall biogenesis uncovers an inhibitor of undecaprenyl diphosphate synthase. Proc. Natl Acad. Sci. USA 112, 11048–11053 (2015).

  66. 66.

    Stokes, J. M., Davis, J. H., Mangat, C. S., Williamson, J. R. & Brown, E. D. Discovery of a small molecule that inhibits bacterial ribosome biogenesis. eLife 3, e03574 (2014).

  67. 67.

    Xu, M. et al. Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat. Med. 22, 1101–1107 (2016).

  68. 68.

    Imperi, F. et al. Repurposing the antimycotic drug flucytosine for suppression of Pseudomonas aeruginosa pathogenicity. Proc. Natl Acad. Sci. USA 110, 7458–7463 (2013).

  69. 69.

    Imperi, F. et al. New life for an old drug: the anthelmintic drug niclosamide inhibits Pseudomonas aeruginosa quorum sensing. Antimicrob. Agents Ch. 57, 996–1005 (2013).

  70. 70.

    Engel, J. C. et al. Image-based high-throughput drug screening targeting the intracellular stage of Trypanosoma cruzi, the agent of Chagas’ disease. Antimicrob. Agents Ch. 54, 3326–3334 (2010).

  71. 71.

    Breger, J. et al. Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathog. 3, e18 (2007).

  72. 72.

    Rajamuthiah, R. et al. Whole animal automated platform for drug discovery against multi-drug resistant Staphylococcus aureus. PLoS ONE 9, e89189 (2014).

  73. 73.

    Brown, S. A., Palmer, K. L. & Whiteley, M. Revisiting the host as a growth medium. Nat. Rev. Microbiol. 6, 657–666 (2008).

  74. 74.

    Colquhoun, J. M., Wozniak, R. A. & Dunman, P. M. Clinically relevant growth conditions alter Acinetobacter baumannii antibiotic susceptibility and promote identification of novel antibacterial agents. PLoS ONE 10, e0143033 (2015).

  75. 75.

    Andersson, J. A. et al. New role for FDA-approved drugs in combating antibiotic-resistant bacteria. Antimicrob. Agents Ch. 60, 3717–3729 (2016).

  76. 76.

    Czyz, D. M. et al. Host-directed antimicrobial drugs with broad-spectrum efficacy against intracellular bacterial pathogens. mBio. 5, e01534–01514 (2014).

  77. 77.

    Singh, S. B. Confronting the challenges of discovery of novel antibacterial agents. Bioorg. Med. Chem. Lett. 24, 3683–3689 (2014).

  78. 78.

    Ejim, L. et al. Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nat. Chem. Biol. 7, 348–350 (2011).

  79. 79.

    Spitzer, M. et al. Cross-species discovery of syncretic drug combinations that potentiate the antifungal fluconazole. Mol. Syst. Biol. 7, 499 (2011).

  80. 80.

    Planer, J. D. et al. Synergy testing of FDA-approved drugs identifies potent drug combinations against Trypanosoma cruzi. PLoS Neglect. Trop. D. 8, e2977 (2014).

  81. 81.

    Sun, W. et al. Synergistic drug combination effectively blocks Ebola virus infection. Antivir. Res. 137, 165–172 (2017).

  82. 82.

    Farha, M. A. et al. Inhibition of WTA synthesis blocks the cooperative action of PBPs and sensitizes MRSA to beta-lactams. ACS Chem. Biol. 8, 226–233 (2013).

  83. 83.

    Aeschlimann, J. R., Dresser, L. D., Kaatz, G. W. & Rybak, M. J. Effects of NorA inhibitors on in vitro antibacterial activities and postantibiotic effects of levofloxacin, ciprofloxacin, and norfloxacin in genetically related strains of Staphylococcus aureus. Antimicrob. Agents Ch. 43, 335–340 (1999).

  84. 84.

    Van den Driessche, F., Brackman, G., Swimberghe, R., Rigole, P. & Coenye, T. Screening a repurposing library for potentiators of antibiotics against Staphylococcus aureus biofilms. Int. J. Antimicrob. Ag. 49, 315–320 (2017).

  85. 85.

    Delattin, N. et al. Repurposing as a means to increase the activity of amphotericin B and caspofungin against Candida albicans biofilms. J. Antimicrob. Chemoth. 69, 1035–1044 (2014).

  86. 86.

    Stokes, J. M. et al. Pentamidine sensitizes Gram-negative pathogens to antibiotics and overcomes acquired colistin resistance. Nat. Microbiol. 2, 17028 (2017).

  87. 87.

    Lehar, J. et al. Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat. Biotechnol. 27, 659–666 (2009).

  88. 88.

    Delcour, A. H. Outer membrane permeability and antibiotic resistance. Biochim. Biophys. Acta. 1794, 808–816 (2009).

  89. 89.

    MacNair, C. R. et al. Overcoming mcr-1 mediated colistin resistance with colistin in combination with other antibiotics. Nat. Commun. 9, 458 (2018).

  90. 90.

    Gygli, S. M., Borrell, S., Trauner, A. & Gagneux, S. Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives. FEMS Microbiol. Rev. 41, 354–373 (2017).

  91. 91.

    Bollenbach, T. Antimicrobial interactions: mechanisms and implications for drug discovery and resistance evolution. Curr. Opin. Microbiol. 27, 1–9 (2015).

  92. 92.

    Eliopoulos, G. M. & Moellering, R. C. Jr. Antibiotic synergism and antimicrobial combinations in clinical infections. Rev. Infect. Dis. 4, 282–293 (1982).

  93. 93.

    Bonhoeffer, S., Lipsitch, M. & Levin, B. R. Evaluating treatment protocols to prevent antibiotic resistance. Proc. Natl Acad. Sci. USA 94, 12106–12111 (1997).

  94. 94.

    Mouton, J. W. Combination therapy as a tool to prevent emergence of bacterial resistance. Infection 27, S24–S28 (1999).

  95. 95.

    Torella, J. P., Chait, R. & Kishony, R. Optimal drug synergy in antimicrobial treatments. PLoS Comput. Biol. 6, e1000796 (2010).

  96. 96.

    Worthington, R. J. & Melander, C. Combination approaches to combat multidrug-resistant bacteria. Trends Biotechnol. 31, 177–184 (2013).

  97. 97.

    Kinnings, S. L. et al. Drug discovery using chemical systems biology: repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis. PLoS Comput. Biol. 5, e1000423 (2009).

  98. 98.

    Forsberg, M. et al. Pharmacokinetics and pharmacodynamics of entacapone and tolcapone after acute and repeated administration: a comparative study in the rat. J. Pharmacol. Exp. Ther. 304, 498–506 (2003).

  99. 99.

    Khodaverdian, V. et al. Discovery of antivirulence agents against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Ch. 57, 3645–3652 (2013).

  100. 100.

    Astolfi, A. et al. Pharmacophore-based repositioning of approved drugs as novel Staphylococcus aureus NorA efflux pump inhibitors. J. Med. Chem. 60, 1598–1604 (2017).

  101. 101.

    Carlson-Banning, K. M. et al. Toward repurposing ciclopirox as an antibiotic against drug-resistant Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae. PLoS ONE 8, e69646 (2013).

  102. 102.

    Deng, L., Sundriyal, S., Rubio, V., Shi, Z. Z. & Song, Y. Coordination chemistry based approach to lipophilic inhibitors of 1-deoxy-D-xylulose-5-phosphate reductoisomerase. J Med. Chem. 52, 6539–6542 (2009).

  103. 103.

    Ekins, S., Mestres, J. & Testa, B. In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. Brit. J. Pharmacol. 152, 9–20 (2007).

  104. 104.

    Wang, Y. et al. PubChem BioAssay: 2014 update. Nucleic Acids Res. 42, D1075–D1082 (2014).

  105. 105.

    Wishart, D. S. et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 36, D901–D906 (2008).

  106. 106.

    Bento, A. P. et al. The ChEMBL bioactivity database: an update. Nucleic Acids Res. 42, D1083–D1090 (2014).

  107. 107.

    Brown, A. S. & Patel, C. J. A standard database for drug repositioning. Sci. Data 4, 170029 (2017).

  108. 108.

    Shameer, K. et al. Systematic analyses of drugs and disease indications in RepurposeDB reveal pharmacological, biological and epidemiological factors influencing drug repositioning. Brief Bioinform. 19, 656–678 (2017).

  109. 109.

    Sateriale, A., Bessoff, K., Sarkar, I. N. & Huston, C. D. Drug repurposing: mining protozoan proteomes for targets of known bioactive compounds. J. Am. Med. Inform. Assn. 21, 238–244 (2014).

  110. 110.

    Chavali, A. K. et al. Metabolic network analysis predicts efficacy of FDA-approved drugs targeting the causative agent of a neglected tropical disease. BMC Syst. Biol. 6, 27 (2012).

  111. 111.

    Lamb, J. The Connectivity Map: a new tool for biomedical research. Nat. Rev. Cancer 7, 54–60 (2007).

  112. 112.

    Josset, L. et al. Gene expression signature-based screening identifies new broadly effective influenza a antivirals. PLoS ONE 5, e13169 (2010).

  113. 113.

    Coelho, E. D., Arrais, J. P. & Oliveira, J. L. Computational discovery of putative leads for drug repositioning through drug-target interaction prediction. PLoS Comput. Biol. 12, e1005219 (2016).

  114. 114.

    Berenstein, A. J., Magarinos, M. P., Chernomoretz, A. & Aguero, F. A multilayer network approach for guiding drug repositioning in neglected diseases. PLoS Negl. Trop. D. 10, e0004300 (2016).

  115. 115.

    Iwata, H., Sawada, R., Mizutani, S. & Yamanishi, Y. Systematic drug repositioning for a wide range of diseases with integrative analyses of phenotypic and molecular data. J. Chem. Inf. Model. 55, 446–459 (2015).

  116. 116.

    Malo, N., Hanley, J. A., Cerquozzi, S., Pelletier, J. & Nadon, R. Statistical practice in high-throughput screening data analysis. Nat. Biotechnol. 24, 167–175 (2006).

  117. 117.

    Li, Y. Y. & Jones, S. J. Drug repositioning for personalized medicine. Genome Med. 4, 27 (2012).

  118. 118.

    March-Vila, E. et al. On the integration of in silico drug design methods for drug repurposing. Front. Pharmacol. 8, 298 (2017).

  119. 119.

    Meyerhoff, A. U. S. Food and Drug Administration approval of AmBisome (liposomal amphotericin B) for treatment of visceral leishmaniasis. Clin. Infect. Dis. 28, 42–48 (1999). discussion 49–51.

  120. 120.

    Cohen, H. G. & Reynolds, T. B. Comparison of metronidazole and chloroquine for the treatment of amoebic liver abscess. A controlled trial. Gastroenterology 69, 35–41 (1975).

  121. 121.

    Katlama, C., De Wit, S., O’Doherty, E., Van Glabeke, M. & Clumeck, N. Pyrimethamine-clindamycin vs. pyrimethamine-sulfadiazine as acute and long-term therapy for toxoplasmic encephalitis in patients with AIDS. Clin. Infect. Dis. 22, 268–275 (1996).

  122. 122.

    Tan, K. R. et al. Doxycycline for malaria chemoprophylaxis and treatment: report from the CDC expert meeting on malaria chemoprophylaxis. Am. J. Trop. Med. Hyg. 84, 517–531 (2011).

  123. 123.

    Ben Salah, A. et al. Topical paromomycin with or without gentamicin for cutaneous leishmaniasis. New Engl. J. Med. 368, 524–532 (2013).

  124. 124.

    Robert-Gangneux, F. & Darde, M. L. Epidemiology of and diagnostic strategies for toxoplasmosis. Clin. Microbiol. Rev. 25, 264–296 (2012).

  125. 125.

    Medina-Franco, J. L., Giulianotti, M. A., Welmaker, G. S. & Houghten, R. A. Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov. Today 18, 495–501 (2013).

  126. 126.

    Fairlamb, A. H., Gow, N. A., Matthews, K. R. & Waters, A. P. Drug resistance in eukaryotic microorganisms. Nat. Microbiol. 1, 16092 (2016).

  127. 127.

    Weisman, J. L. et al. Searching for new antimalarial therapeutics amongst known drugs. Chem. Biol. Drug Des. 67, 409–416 (2006).

  128. 128.

    World malaria report 2017 (WHO, 2017).

  129. 129.

    Attaran, A. Where did it all go wrong? Nature 430, 932–933 (2004).

  130. 130.

    Gottlieb, S. Antihistamine drug withdrawn by manufacturer. BMJ 319, 7 (1999).

  131. 131.

    Derbyshire, E. R., Prudencio, M., Mota, M. M. & Clardy, J. Liver-stage malaria parasites vulnerable to diverse chemical scaffolds. Proc. Natl Acad. Sci. USA 109, 8511–8516 (2012).

  132. 132.

    Roman, G., Crandall, I. E. & Szarek, W. A. Synthesis and anti-Plasmodium activity of benzimidazole analogues structurally related to astemizole. ChemMedChem 8, 1795–1804 (2013).

  133. 133.

    Gunther, J., Shafir, S., Bristow, B. & Sorvillo, F. Short report: Amebiasis-related mortality among United States residents, 1990–2007. Am. J. Trop. Med. Hyg. 85, 1038–1040 (2011).

  134. 134.

    Andrade, R. M. & Reed, S. L. New drug target in protozoan parasites: the role of thioredoxin reductase. Front. Microbiol. 6, 975 (2015).

  135. 135.

    Roder, C. & Thomson, M. J. Auranofin: repurposing an old drug for a golden new age. Drugs R.D. 15, 13–20 (2015).

  136. 136.

    Tejman-Yarden, N. et al. A reprofiled drug, auranofin, is effective against metronidazole-resistant Giardia lamblia. Antimicrob. Agents Ch. 57, 2029–2035 (2013).

  137. 137.

    Berglof, F. E., Berglof, K. & Walz, D. T. Auranofin: an oral chrysotherapeutic agent for the treatment of rheumatoid arthritis. J. Rheumatol. 5, 68–74 (1978).

  138. 138.

    Hill, A. & Cooke, G. Medicine. Hepatitis C can be cured globally, but at what cost? Science 345, 141–142 (2014).

  139. 139.

    Huang, R. et al. The NCGC pharmaceutical collection: a comprehensive resource of clinically approved drugs enabling repurposing and chemical genomics. Sci. Transl Med. 3, 80ps16 (2011).

  140. 140.

    Chen, L. H. & Hamer, D. H. Zika virus: rapid spread in the Western hemisphere. Ann. Intern. Med. 164, 613–615 (2016).

  141. 141.

    Tang, H. et al. Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell 18, 587–590 (2016).

  142. 142.

    Khanim, F. L. et al. Redeployment-based drug screening identifies the anti-helminthic niclosamide as anti-myeloma therapy that also reduces free light chain production. Blood Cancer J. 1, e39 (2011).

  143. 143.

    Jordan, V. C. Tamoxifen: the herald of a new era of preventive therapeutics. J. Natl Cancer I. 89, 747–749 (1997).

  144. 144.

    Friedman, Z. Y. Recent advances in understanding the molecular mechanisms of tamoxifen action. Cancer Invest. 16, 391–396 (1998).

  145. 145.

    Dolan, K. et al. Antifungal activity of tamoxifen: in vitro and in vivo activities and mechanistic characterization. Antimicrob. Agents Ch. 53, 3337–3346 (2009).

  146. 146.

    Wiseman, H., Cannon, M. & Arnstein, H. R. Observation and significance of growth inhibition of Saccharomyces cerevisiae (A224A) by the anti-oestrogen drug tamoxifen. Biochem. Soc. T. 17, 1038–1039 (1989).

  147. 147.

    Wiseman, H., Cannon, M., Arnstein, H. R. & Halliwell, B. Enhancement by tamoxifen of the membrane antioxidant action of the yeast membrane sterol ergosterol: relevance to the antiyeast and anticancer action of tamoxifen. Biochim. Biophys. Acta 1181, 201–206 (1993).

  148. 148.

    Beggs, W. H. Anti-Candida activity of the anti-cancer drug tamoxifen. Res. Commun. Chem. Path. 80, 125–128 (1993).

  149. 149.

    Edlind, T., Smith, L., Henry, K., Katiyar, S. & Nickels, J. Antifungal activity in Saccharomyces cerevisiae is modulated by calcium signalling. Mol. Microbiol. 46, 257–268 (2002).

  150. 150.

    Parsons, A. B. et al. Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. Cell 126, 611–625 (2006).

  151. 151.

    Antimisiaris, D., Bae, K. G., Morton, L. & Gully, Z. Tamoxifen pharmacovigilance: implications for safe use in the future. Consult. Pharm. 32, 535–546 (2017).

  152. 152.

    Lass-Florl, C., Dierich, M. P., Fuchs, D., Semenitz, E. & Ledochowski, M. Antifungal activity against Candida species of the selective serotonin-reuptake inhibitor, sertraline. Clin. Infect. Dis. 33, E135–E136 (2001).

  153. 153.

    Lass-Florl, C. et al. Antifungal properties of selective serotonin reuptake inhibitors against Aspergillus species in vitro. J. Antimicrob. Chemoth. 48, 775–779 (2001).

  154. 154.

    Zhai, B., Wu, C., Wang, L., Sachs, M. S. & Lin, X. The antidepressant sertraline provides a promising therapeutic option for neurotropic cryptococcal infections. Antimicrob. Agents Ch. 56, 3758–3766 (2012).

  155. 155.

    Rhein, J. et al. Efficacy of adjunctive sertraline for the treatment of HIV-associated cryptococcal meningitis: an open-label dose-ranging study. Lancet Infect. Dis. 16, 809–818 (2016).

  156. 156.

    Villanueva-Lozano, H. et al. Clinical evaluation of the antifungal effect of sertraline in the treatment of cryptococcal meningitis in HIV patients: a single Mexican center experience. Infection 46, 25–30 (2018).

  157. 157.

    Andrews, P., Thyssen, J. & Lorke, D. The biology and toxicology of molluscicides, Bayluscide. Pharmacol. Therapeut. 19, 245–295 (1982).

  158. 158.

    Mook, R. A. Jr et al. Structure-activity studies of Wnt/beta-catenin inhibition in the Niclosamide chemotype: identification of derivatives with improved drug exposure. Bioorgan. Med. Chem. 23, 5829–5838 (2015).

  159. 159.

    Ye, Y., Zhang, X., Zhang, T., Wang, H. & Wu, B. Design and evaluation of injectable niclosamide nanocrystals prepared by wet media milling technique. Drug Dev. Ind. Pharm. 41, 1416–1424 (2015).

  160. 160.

    Lu, W. et al. Niclosamide suppresses cancer cell growth by inducing Wnt co-receptor LRP6 degradation and inhibiting the Wnt/beta-catenin pathway. PLoS ONE 6, e29290 (2011).

  161. 161.

    Li, R. et al. Niclosamide overcomes acquired resistance to erlotinib through suppression of STAT3 in non-small cell lung cancer. Mol. Cancer Ther. 12, 2200–2212 (2013).

  162. 162.

    Liang, L. et al. Inhibitory effects of niclosamide on inflammation and migration of fibroblast-like synoviocytes from patients with rheumatoid arthritis. Inflamm. Res. 64, 225–233 (2015).

  163. 163.

    Jurgeit, A. et al. Niclosamide is a proton carrier and targets acidic endosomes with broad antiviral effects. PLoS Pathog. 8, e1002976 (2012).

  164. 164.

    Amos, H. & Vollmayer, E. Effect of pentamidine on the growth of Escherichia coli. J. Bacteriol. 73, 172–177 (1957).

  165. 165.

    Wien, R., Harrison, J. & Freeman, W. A. Diamidines as antibacterial compounds. Brit. J. Pharm. Chemoth. 3, 211–218 (1948).

  166. 166.

    Wien, R., Harrison, J. & Freeman, W. A. New antibacterial diamidines. Lancet 1, 711 (1948).

  167. 167.

    Libman, M. D., Miller, M. A. & Richards, G. K. Antistaphylococcal activity of pentamidine. Antimicrob. Agents Ch. 34, 1795–1796 (1990).

  168. 168.

    Fox, K. R., Sansom, C. E. & Stevens, M. F. Footprinting studies on the sequence-selective binding of pentamidine to DNA. FEBS Lett. 266, 150–154 (1990).

  169. 169.

    Minnick, M. F., Hicks, L. D., Battisti, J. M. & Raghavan, R. Pentamidine inhibits Coxiella burnetii growth and 23S rRNA intron splicing in vitro. Int. J. Antimicrob. Ag. 36, 380–382 (2010).

  170. 170.

    Sun, T. & Zhang, Y. Pentamidine binds to tRNA through non-specific hydrophobic interactions and inhibits aminoacylation and translation. Nucleic Acids Res. 36, 1654–1664 (2008).

  171. 171.

    Mullard, A. Drug repurposing programmes get lift off. Nat. Rev. Drug Discov. 11, 505–506 (2012).

  172. 172.

    Corsello, S. M. et al. The Drug Repurposing Hub: a next-generation drug library and information resource. Nat. Med. 23, 405–408 (2017).

  173. 173.

    Weir, S. J., DeGennaro, L. J. & Austin, C. P. Repurposing approved and abandoned drugs for the treatment and prevention of cancer through public-private partnership. Cancer Res. 72, 1055–1058 (2012).

  174. 174.

    Kwok, A. K. & Koenigbauer, F. M. Incentives to repurpose existing drugs for orphan indications. ACS Med. Chem. Lett. 6, 828–830 (2015).

  175. 175.

    Simarro, P. P., Franco, J., Diarra, A., Postigo, J. A. & Jannin, J. Update on field use of the available drugs for the chemotherapy of human African trypanosomiasis. Parasitology 139, 842–846 (2012).

  176. 176.

    Smorenburg, C. H. et al. Phase II study of miltefosine 6% solution as topical treatment of skin metastases in breast cancer patients. Colloq. Inse. 11, 825–828 (2000).

  177. 177.

    Yarchoan, R. et al. Administration of 3’-azido-3’-deoxythymidine, an inhibitor of HTLV-III/LAV replication, to patients with AIDS or AIDS-related complex. Lancet 1, 575–580 (1986).

  178. 178.

    Simpson, P. B. & Reichman, M. Opening the lead generation toolbox. Nat. Rev. Drug Discov. 13, 3–4 (2014).

  179. 179.

    Nilsson, N. & Felding, J. Open innovation platforms to boost pharmaceutical collaborations: evaluating external compounds for desired biological activity. Future Med. Chem. 7, 1853–1859 (2015).

  180. 180.

    Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliver. Rev. 46, 3–26 (2001).

  181. 181.

    Magarinos, M. P. et al. TDR Targets: a chemogenomics resource for neglected diseases. Nucleic Acids Res. 40, D1118–D1127 (2012).

  182. 182.

    von Eichborn, J. et al. PROMISCUOUS: a database for network-based drug-repositioning. Nucleic Acids Res. 39, D1060–D1066 (2011).

  183. 183.

    Kuhn, M., Letunic, I., Jensen, L. J. & Bork, P. The SIDER database of drugs and side effects. Nucleic Acids Res. 44, D1075–D1079 (2016).

  184. 184.

    Siramshetty, V. B. et al. SuperDRUG2: a one stop resource for approved/marketed drugs. Nucleic Acids Res. 46, D1137–D1143 (2018).

Download references

Acknowledgements

This work was supported by a Foundation grant from the Canadian Institutes of Health Research (FRN-143215) and a Tier I Canada Research Chair award to E.D.B.

Author information

Affiliations

  1. Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada

    • Maya A. Farha
    •  & Eric D. Brown

Authors

  1. Search for Maya A. Farha in:

  2. Search for Eric D. Brown in:

Contributions

Both authors researched data for the article, substantially contributed to discussion of content, wrote the article, and reviewed and edited the manuscript before submission.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Eric D. Brown.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41564-019-0357-1