Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adeno-associated virus 2 bound to its cellular receptor AAVR

Abstract

Adeno-associated virus (AAV) is a leading vector for virus-based gene therapy. The receptor for AAV (AAVR; also named KIAA0319L) was recently identified, and the precise characterization of AAV–AAVR recognition is in immediate demand. Taking advantage of a particle-filtering algorithm, we report here the cryo-electron microscopy structure of the AAV2–AAVR complex at 2.8 Å resolution. This structure reveals that of the five Ig-like polycystic kidney disease (PKD) domains in AAVR, PKD2 binds directly to the spike region of the AAV2 capsid adjacent to the icosahedral three-fold axis. Residues in strands B and E, and the BC loop of AAVR PKD2 interact directly with the AAV2 capsid. The interacting residues in the AAV2 capsid are mainly in AAV-featured variable regions. Mutagenesis of the amino acids at the AAV2–AAVR interface reduces binding activity and viral infectivity. Our findings provide insights into the biology of AAV entry with high-resolution details, providing opportunities for the development of new AAV vectors for gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The cryo-EM structures.
Fig. 2: The complex structure of AAVR bound to AAV2.
Fig. 3: Conformational changes in the AAV2 capsid following AAVR attachment.
Fig. 4: Mutagenesis study of AAVR for AAV2 binding assays.

Similar content being viewed by others

Data availability

The obtained cryo-EM density maps and the data of the resolved structures were deposited into the Electron Microscopy Data Bank (EMDB) and Protein Data Bank (PDB) with the following accession numbers: AAV2, EMD-9671 and 6IH9; AAV2–AAVR complex, EMD-9672 and 6IHB. All other data supporting the findings of this study are available from the corresponding authors upon request.

References

  1. Zinn, E. & Vandenberghe, L. H. Adeno-associated virus: fit to serve. Curr. Opin. Virol. 8, 90–97 (2014).

    Article  Google Scholar 

  2. Lisowski, L. et al. Selection and evaluation of clinically relevant AAV variants in a xenograft liver model. Nature 506, 382–386 (2014).

    Article  CAS  Google Scholar 

  3. Kotterman, M. A. & Schaffer, D. V. Engineering adeno-associated viruses for clinical gene therapy. Nat. Rev. Genet. 15, 445–451 (2014).

    Article  CAS  Google Scholar 

  4. Deverman, B. E., Ravina, B. M., Bankiewicz, K. S., Paul, S. M. & Sah, D. W. Y. Gene therapy for neurological disorders: progress and prospects. Nat. Rev. Drug Discov. 17, 641–659 (2018); erratum 17, 767 (2018).

    Article  CAS  Google Scholar 

  5. Nathwani, A. C. et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N. Engl. J. Med. 365, 2357–2365 (2011).

    Article  CAS  Google Scholar 

  6. Miller, N. Glybera and the future of gene therapy in the European Union. Nat. Rev. Drug. Discov. 11, 419 (2012).

    Article  CAS  Google Scholar 

  7. Dias, M. F. et al. Molecular genetics and emerging therapies for retinitis pigmentosa: basic research and clinical perspectives. Prog. Retin. Eye Res. 63, 107–131 (2018).

    Article  CAS  Google Scholar 

  8. Linden, R. M. & Berns, K. I. Molecular biology of adeno-associated viruses. Contrib. Microbiol. 4, 68–84 (2000).

    Article  CAS  Google Scholar 

  9. Agbandje-McKenna, M. & Kleinschmidt, J. AAV capsid structure and cell interactions. Methods Mol. Biol. 807, 47–92 (2011).

    Article  CAS  Google Scholar 

  10. Burg, M. et al. Atomic structure of a rationally engineered gene delivery vector, AAV2.5. J. Struct. Biol. 203, 236–241 (2018).

    Article  CAS  Google Scholar 

  11. Govindasamy, L. et al. Structural insights into adeno-associated virus serotype 5. J. Virol. 87, 11187–11199 (2013).

    Article  CAS  Google Scholar 

  12. Halder, S. et al. Structure of neurotropic adeno-associated virus AAVrh.8. J. Struct. Biol. 192, 21–36 (2015).

    Article  CAS  Google Scholar 

  13. Lerch, T. F. & Chapman, M. S. Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B). Virology 423, 6–13 (2012).

    Article  CAS  Google Scholar 

  14. Padron, E. et al. Structure of adeno-associated virus type 4. J. Virol. 79, 5047–5058 (2005).

    Article  CAS  Google Scholar 

  15. Xie, Q. et al. The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc. Natl Acad. Sci. USA 99, 10405–10410 (2002).

    Article  CAS  Google Scholar 

  16. Xie, Q. et al. The 2.8 Å electron microscopy structure of adeno-associated virus-DJ bound by a heparinoid pentasaccharide. Mol. Ther. Methods Clin. Dev. 5, 1–12 (2017).

    Article  CAS  Google Scholar 

  17. McCraw, D. M., O'Donnell, J. K., Taylor, K. A., Stagg, S. M. & Chapman, M. S. Structure of adeno-associated virus-2 in complex with neutralizing monoclonal antibody A20. Virology 431, 40–49 (2012).

    Article  CAS  Google Scholar 

  18. Summerford, C. & Samulski, R. J. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J. Virol. 72, 1438–1445 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kashiwakura, Y. et al. Hepatocyte growth factor receptor is a coreceptor for adeno-associated virus type 2 infection. J. Virol. 79, 609–614 (2005).

    Article  CAS  Google Scholar 

  20. Qing, K. et al. Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat. Med. 5, 71–77 (1999).

    Article  CAS  Google Scholar 

  21. Pillay, S. et al. An essential receptor for adeno-associated virus infection. Nature 530, 108–112 (2016).

    Article  CAS  Google Scholar 

  22. Ibraghimov-Beskrovnaya, O. et al. Strong homophilic interactions of the Ig-like domains of polycystin-1, the protein product of an autosomal dominant polycystic kidney disease gene, PKD1. Hum. Mol. Genet. 9, 1641–1649 (2000).

    Article  CAS  Google Scholar 

  23. Pillay, S. et al. AAV serotypes have distinctive interactions with domains of the cellular receptor AAVR. J. Virol. https://doi.org/10.1128/JVI.00391-17 (2017).

  24. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  Google Scholar 

  25. Hu, M. et al. A particle-filter framework for robust cryo-EM 3D reconstruction. Nat. Methods 15, 1083–1089 (2018).

    Article  CAS  Google Scholar 

  26. Pillay, S. & Carette, J. E. Host determinants of adeno-associated viral vector entry. Curr. Opin. Virol. 24, 124–131 (2017).

    Article  CAS  Google Scholar 

  27. Couto, J. M. et al. The KIAA0319-like (KIAA0319L) gene on chromosome 1p34 as a candidate for reading disabilities. J. Neurogenet. 22, 295–313 (2008).

    Article  CAS  Google Scholar 

  28. Platt, M. P. et al. Embryonic disruption of the candidate dyslexia susceptibility gene homolog Kiaa0319-like results in neuronal migration disorders. Neuroscience 248, 585–593 (2013).

    Article  CAS  Google Scholar 

  29. Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584–590 (2013).

    Article  CAS  Google Scholar 

  30. Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).

    Article  Google Scholar 

  31. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  32. Afonine, P. V. et al. New tools for the analysis and validation of cryo-EM maps and atomic models. bioRxiv https://doi.org/10.1101/279844 (2018).

  33. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Computing and Cryo-EM Platforms of Tsinghua University, Branch of the National Center for Protein Sciences (Beijing) for providing facilities. They also thank L. Chen for his help in data collection, D. Yan for his assistance in molecular cloning, W. Huang for her help in cell culture, and Q. Ding for his discussion and comments. This work was supported by the National Program on Key Research Project of China (2017YFC0840300 and 2018YFA0507200) and the National Natural Science Foundation of China (grant numbers 81322023, 31770309, 81372284, 81520108019 and 31370733).

Author information

Authors and Affiliations

Authors

Contributions

Z.L., W.D. and Z.R. conceived the project. Z.L. and W.D. designed the experiments. Ra.Z., L.C., M.C., Z.S., M.H., Ro.Z., W.S., X.Z. and Z.Y. performed virus and protein purification, cryo-EM data collection and processing. Ra.Z., L.C., X.L., Y.S., S.L., W.D. and Z.L. analysed the data. Z.L., W.D. and Z.R. wrote the manuscript. All authors discussed the experiments, read and approved the manuscript.

Corresponding authors

Correspondence to Wei Ding or Zhiyong Lou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–12 and Supplementary Tables 1–6.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Cao, L., Cui, M. et al. Adeno-associated virus 2 bound to its cellular receptor AAVR. Nat Microbiol 4, 675–682 (2019). https://doi.org/10.1038/s41564-018-0356-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0356-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing