Sensitive high-throughput single-cell RNA-seq reveals within-clonal transcript correlations in yeast populations


Single-cell RNA sequencing has revealed extensive cellular heterogeneity within many organisms, but few methods have been developed for microbial clonal populations. The yeast genome displays unusually dense transcript spacing, with interleaved and overlapping transcription from both strands, resulting in a minuscule but complex pool of RNA that is protected by a resilient cell wall. Here, we have developed a sensitive, scalable and inexpensive yeast single-cell RNA-seq (yscRNA-seq) method that digitally counts transcript start sites in a strand- and isoform-specific manner. YscRNA-seq detects the expression of low-abundance, noncoding RNAs and at least half of the protein-coding genome in each cell. In clonal cells, we observed a negative correlation for the expression of sense–antisense pairs, whereas paralogs and divergent transcripts co-expressed. By combining yscRNA-seq with index sorting, we uncovered a linear relationship between cell size and RNA content. Although we detected an average of ~3.5 molecules per gene, the number of expressed isoforms is restricted at the single-cell level. Remarkably, the expression of metabolic genes is highly variable, whereas their stochastic expression primes cells for increased fitness towards the corresponding environmental challenge. These findings suggest that functional transcript diversity acts as a mechanism that provides a selective advantage to individual cells within otherwise transcriptionally heterogeneous populations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Absolute transcriptome quantification of single yeast cells using yscRNA-seq.
Fig. 2: yscRNA-seq as a tool to quantitatively profile transcriptional architectures and TSS variation.
Fig. 3: yscRNA-seq reveals a high-resolution map of the transcriptional heterogeneity within clonal yeast populations.
Fig. 4: Functional consequences of stochastic gene expression.

Code availability

Custom code generated in this study can be downloaded from

Data availability

All data generated in this study has been uploaded to Gene Expression Omnibus under accession number GSE122392.


  1. 1.

    Picelli, S. Single-cell RNA-sequencing: the future of genome biology is now. RNA Biol. 14, 637–650 (2017).

    Google Scholar 

  2. 2.

    Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    CAS  Article  Google Scholar 

  3. 3.

    Miura, F. et al. Absolute quantification of the budding yeast transcriptome by means of competitive PCR between genomic and complementary DNAs. BMC Genomics 9, 574 (2008).

    Article  Google Scholar 

  4. 4.

    Gasch, A. P. et al. Single-cell RNA sequencing reveals intrinsic and extrinsic regulatory heterogeneity in yeast responding to stress. PLoS Biol. 15, e2004050 (2017).

    Article  Google Scholar 

  5. 5.

    Saint, M., Bertaux, F., Tang, W., Sun, X.-M. & Game, L. Single-cell phenotyping and RNA sequencing reveal novel patterns of gene expression heterogeneity and regulation during growth and stress adaptation in a unicellular eukaryote. Preprint at bioRxiv (2018).

  6. 6.

    Pelechano, V., Wei, W. & Steinmetz, L. M. Extensive transcriptional heterogeneity revealed by isoform profiling. Nature 497, 127–131 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    Pelechano, V., Wei, W. & Steinmetz, L. M. Widespread co-translational RNA decay reveals ribosome dynamics. Cell 161, 1400–1412 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Hennig, B. P. et al. Large-scale low-cost NGS library preparation using a robust Tn5 purification and tagmentation protocol. G3 8, 79–89 (2018).

    CAS  Article  Google Scholar 

  9. 9.

    Svensson, V. et al. Power analysis of single-cell RNA-sequencing experiments. Nat. Methods 14, 381–387 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    Bagnoli, J. W. et al. Sensitive and powerful single-cell RNA sequencing using mcSCRB-seq. Nat. Commun. 9, 2937 (2018).

    Article  Google Scholar 

  11. 11.

    Grün, D., Kester, L. & Van Oudenaarden, A. Validation of noise models for single-cell transcriptomics. Nat. Methods 11, 637–640 (2014).

    Article  Google Scholar 

  12. 12.

    Xu, Z. et al. Bidirectional promoters generate pervasive transcription in yeast. Nature 457, 1033–1037 (2009).

    CAS  Article  Google Scholar 

  13. 13.

    Wei, W. et al. Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789. Proc. Natl Acad. Sci. USA 104, 12825–12830 (2007).

    CAS  Article  Google Scholar 

  14. 14.

    David, L. et al. A high-resolution map of transcription in the yeast genome. Proc. Natl Acad. Sci. USA 103, 5320–5325 (2006).

    CAS  Article  Google Scholar 

  15. 15.

    Pelechano, V., Wei, W., Jakob, P. & Steinmetz, L. M. Genome-wide identification of transcript start and end sites by transcript isoform sequencing. Nat. Protoc. 9, 1740–1759 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    Granovskaia, M. V. et al. High-resolution transcription atlas of the mitotic cell cycle in budding yeast. Genome Biol. 11, R24 (2010).

    Article  Google Scholar 

  17. 17.

    Kellis, M., Birren, B. W. & Lander, E. S. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428, 617–624 (2004).

    CAS  Article  Google Scholar 

  18. 18.

    Xu, Z. et al. Antisense expression increases gene expression variability and locus interdependency. Mol. Syst. Biol. 7, 468 (2011).

    Article  Google Scholar 

  19. 19.

    Lenstra, T. L., Coulon, A., Chow, C. C. & Larson, D. R. Single-molecule imaging reveals a switch between spurious and functional ncRNA transcription. Mol. Cell 60, 597–610 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Murray, S. C. et al. Sense and antisense transcription are associated with distinct chromatin architectures across genes. Nucleic Acids Res. 43, 7823–7837 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    Aldea, M., Jenkins, K. & Csikász-Nagy, A. Growth rate as a direct regulator of the start network to set cell size. Front. Cell Dev. Biol. 5, 57 (2017).

    Article  Google Scholar 

  22. 22.

    Turner, J. J., Ewald, J. C. & Skotheim, J. M. Cell size control in yeast. Curr. Biol. 22, R350–R359 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    Schmoller, K. M., Turner, J. J., Kõivomägi, M. & Skotheim, J. M. Dilution of the cell cycle inhibitor Whi5 controls budding-yeast cell size. Nature 526, 268–272 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    Brennecke, P. et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods 10, 1093–1095 (2013).

    CAS  Article  Google Scholar 

  25. 25.

    Velten, L. et al. Human haematopoietic stem cell lineage commitment is a continuous process. Nat. Cell Biol. 19, 271–281 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    Zajac, P., Islam, S., Hochgerner, H., Lönnerberg, P. & Linnarsson, S. Base preferences in non-templated nucleotide incorporation by MMLV-derived reverse transcriptases. PLoS ONE 8, e85270 (2013).

  27. 27.

    Spellman, P. T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998).

    CAS  Article  Google Scholar 

  28. 28.

    Teste, M.-A., Duquenne, M., François, J. M. & Parrou, J.-L. Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae. BMC Mol. Biol. 10, 99 (2009).

    Article  Google Scholar 

  29. 29.

    Houser, J. R. et al. An improved short-lived fluorescent protein transcriptional reporter for Saccharomyces cerevisiae. Yeast 29, 519–530 (2012).

    CAS  Article  Google Scholar 

  30. 30.

    Huber, F. et al. Protein abundance control by non-coding antisense transcription. Cell Rep. 15, 2625–2636 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    Venturelli, O. S., Zuleta, I., Murray, R. M. & El-Samad, H. Population diversification in a yeast metabolic program promotes anticipation of environmental shifts. PLoS Biol. 13, e1002042 (2015).

    Article  Google Scholar 

  32. 32.

    Wang, J. et al. Natural variation in preparation for nutrient depletion reveals a cost–benefit tradeoff. PLoS Biol. 13, e1002041 (2015).

    Article  Google Scholar 

  33. 33.

    Janke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962 (2004).

    CAS  Article  Google Scholar 

  34. 34.

    Islam, S. et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods 11, 163–166 (2013).

    Article  Google Scholar 

  35. 35.

    Pelechano, V., Wei, W. & Steinmetz, L. M. Genome-wide quantification of 5ʹ-phosphorylated mRNA degradation intermediates for analysis of ribosome dynamics. Nat. Protoc. 11, 359–376 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    McDavid, A. et al. Data exploration, quality control and testing in single-cell qPCR-based gene expression experiments. Bioinformatics 29, 461–467 (2013).

    CAS  Article  Google Scholar 

  37. 37.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  Google Scholar 

  38. 38.

    Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    CAS  Article  Google Scholar 

  39. 39.

    Ri Reimand, J., Kull, M., Peterson, H., Hansen, J. & Vilo, J. g:Profiler—a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res. 35, 193–200 (2007).

    Article  Google Scholar 

Download references


The authors would like to thank S. Linnarsson for providing reagents during the initial tests with yscRNA-seq. We thank the Protein Expression and Purification Core Facility at EMBL, B. Hennig and L. Velten for providing in-house purified Tn5. We thank R. Böttcher for fruitful discussions. We thank D. Caetano-Anollés for editing and refining the manuscript. M.N.-R. was a recipient of an EMBO long-term fellowship (Stanford University) and later of a Maria de Maeztu Postdoctoral Fellowship (Doctores Banco de Santander-María de Maeztu at Universitat Pompeu Fabra). P.L. is a recipient of a FI Predoctoral Fellowship (Generalitat de Catalunya). This work was supported by the National Institutes of Health and a European Research Council Advanced Investigator Grant (grant no. AdG-294542 to L.M.S.) and the National Key Research and Development Program of China (grant no. 2017YFC0908405 to W.W.). The study was also supported by grants from the Spanish Ministry of Economy and Competitiveness (grant nos BFU2015-64437-P, FEDER, BFU2014-52125-REDT and BFU2014-51672-REDC to F.P.; BFU2017-85152-P and FEDER to E.d.N.), the Catalan Government (grant no. 2017 SGR 799), the Fundación Botín, the Banco Santander through its Santander Universities Global Division to F.P. and the Unidad de Excelencia Maria de Maeztu, grant no. MDM-2014-0370. F.P. is a recipient of an ICREA Acadèmia (Generalitat de Catalunya).

Author information




M.N.-R., S.I., W.W. and L.M.S. conceived the project. M.N.-R., S.I., W.W., P.L. and M.N. developed the protocol and performed the analyses. M.N.-R., S.I. and M.N. performed the experiments. W.W. and P.L. performed the computational analyses. M.N.-R., S.I., P.L., W.W., E.d.N., F.P. and L.M.S. participated in experimental design, data analysis and writing the manuscript. E.d.N., F.P. and L.M.S. supervised the work. All authors read and edited the manuscript.

Corresponding author

Correspondence to Lars M. Steinmetz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–4, and Supplementary Tables 1 and 2.

Reporting Summary

Supplementary Table 3

Raw expression BY4741 yscRNA-seq libraries after applying the quality filter criteria (total of 127 cells). Table contains raw number of molecules for each gene (rows) for each cell (rows).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nadal-Ribelles, M., Islam, S., Wei, W. et al. Sensitive high-throughput single-cell RNA-seq reveals within-clonal transcript correlations in yeast populations. Nat Microbiol 4, 683–692 (2019).

Download citation

Further reading