Pseudogene repair driven by selection pressure applied in experimental evolution

Abstract

Pseudogenes represent open reading frames that have been damaged by mutations, rendering the gene product non-functional. Pseudogenes are found in many genomes and are not always eliminated, even if they are potentially ‘wasteful’. This raises a fundamental question about their prevalence. Here we report pseudogene efeU repair that restores the iron uptake system of Escherichia coli under a designed selection pressure during adaptive laboratory evolution.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The fragmentation and repair of efeU.
Fig. 2: Mutations in efeU acquired during ALE.

Code availability

All code used to analyse the data is available at https://github.com/SBRG/mutation_analysis.

Data availability

DNA sequencing data from this study are available from the Sequence Read Archive database (SRA accession PRJNA505542). RNA sequencing data from this study are available from the Gene Expression Omnibus database under the accession number GSE122779.

References

  1. 1.

    Ratledge, C. & Dover, L. G. Annu. Rev. Microbiol. 54, 881–941 (2000).

  2. 2.

    Pi, H. & Helmann, J. D. Proc. Natl Acad. Sci. USA 114, 12785–12790 (2017).

  3. 3.

    Grosse, C. et al. Mol. Microbiol. 62, 120–131 (2006).

  4. 4.

    Wattam, A. R. et al. Nucleic Acids Res. 45, D535–D542 (2017).

  5. 5.

    Conrad, T. M., Lewis, N. E. & Palsson, B. Ø. Mol. Syst. Biol. 7, 509 (2011).

  6. 6.

    Sandberg, T. E. et al. PLoS ONE 11, e0151130 (2016).

  7. 7.

    Zhou, K., Aertsen, A. & Michiels, C. W. FEMS Microbiol. Rev. 38, 119–141 (2014).

  8. 8.

    Miethke, M., Monteferrante, C. G., Marahiel, M. A. & van Dijl, J. M. Biochim. Biophys. Acta 1833, 2267–2278 (2013).

  9. 9.

    Seo, S. W. et al. Nat. Commun. 5, 4910 (2014).

  10. 10.

    Tutar, Y. Comp. Funct. Genomics 2012, 424526 (2012).

  11. 11.

    Kuo, C. H. & Ochman, H. PLoS Genet. 6, e1001050 (2010).

  12. 12.

    Lawrence, J. G., Hendrix, R. W. & Casjens, S. Trends Microbiol. 9, 535–540 (2001).

  13. 13.

    Mira, A., Ochman, H. & Moran, N. A. Trends Genet. 17, 589–596 (2001).

  14. 14.

    Thomason, L. C., Costantino, N. & Court, D. L. Curr. Protoc. Mol. Biol. 79, 1.17.1–1.17.8 (2007).

  15. 15.

    Baba, T. et al. Mol. Syst. Biol. 2, 2006.0008 (2006).

  16. 16.

    Datsenko, K. A. & Wanner, B. L. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

  17. 17.

    Zhou, K. et al. Int. J. Antimicrob. Agents 51, 822–828 (2018).

  18. 18.

    Fay, M. P. Biostatistics 11, 373–374 (2010).

  19. 19.

    Katoh, K., Rozewicki, J. & Yamada, K. D. Brief. Bioinform. https://doi.org/10.1093/bib/bbx108 (2017).

  20. 20.

    Touchon, M. et al. PLoS Genet. 5, e1000344 (2009).

  21. 21.

    Rambaut, A. FigTree v1.4.3 (Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, 2018); http://tree.bio.ed.ac.uk/software/figtree/

  22. 22.

    Fleming, T. P., Nahlik, M. S. & McIntosh, M. A. J. Bacteriol. 156, 1171–1177 (1983).

  23. 23.

    Chen, S. et al. BMC Bioinform. 18, 80 (2017).

  24. 24.

    Deatherage, D. E. & Barrick, J. E. Methods Mol. Biol. 1151, 165–188 (2014).

  25. 25.

    Phaneuf, P. Zenodo v.1.4.1 (Zenodo, San Diego, 2018); https://doi.org/10.5281/zenodo.1301237

  26. 26.

    Phaneuf, P. V., Gosting, D., Palsson, B. & Feist, A. Preprint at bioRxiv (2018); https://www.biorxiv.org/content/biorxiv/early/2018/05/15/320747.full.pdf

  27. 27.

    Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Genome. Biol. 10, R25 (2009).

  28. 28.

    Lawrence, M. et al. PLoS Comput. Biol. 9, e1003118 (2013).

  29. 29.

    Love, M. I., Huber, W. & Anders, S. Genome Biol. 15, 550 (2014).

  30. 30.

    Yang, J. et al. Nat. Methods 12, 7–8 (2015).

  31. 31.

    Roy, A., Kucukural, A. & Zhang, Y. Nat. Protoc. 5, 725–738 (2010).

  32. 32.

    Zhang, Y. BMC Bioinform. 9, 40 (2008).

Download references

Acknowledgements

This work was funded by the Novo Nordisk Foundation under grant number NNF10CC1016517.

Author information

A.A., A.M.F. and B.O.P. designed the study. A.A., C.A.O., S.X., Y.H. and R.S. performed the experiments. A.A., L.Y., A.V.S., C.A.O., E.C. and T.E.S. analysed the data. K.S.C. and P.V.P. contributed analysis tools. A.A. and B.O.P. wrote the manuscript.

Correspondence to Bernhard O. Palsson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–5, Supplementary Tables 1–6 and Supplementary References.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anand, A., Olson, C.A., Yang, L. et al. Pseudogene repair driven by selection pressure applied in experimental evolution. Nat Microbiol 4, 386–389 (2019). https://doi.org/10.1038/s41564-018-0340-2

Download citation

Further reading