Filoviruses, especially Ebola virus (EBOV) and Marburg virus (MARV), are notoriously pathogenic and capable of causing severe haemorrhagic fever diseases in humans with high lethality1,2. The risk of future outbreaks is exacerbated by the discovery of other bat-borne filoviruses of wide genetic diversity globally3,4,5. Here we report the characterization of a phylogenetically distinct bat filovirus, named Měnglà virus (MLAV). The coding-complete genome of MLAV shares 32–54% nucleotide sequence identity with known filoviruses. Phylogenetic analysis places this new virus between EBOV and MARV, suggesting the need for a new genus taxon. Importantly, despite the low amino acid sequence identity (22–39%) of the glycoprotein with other filoviruses, MLAV is capable of using the Niemann–Pick C1 (NPC1) as entry receptor. MLAV is also replication-competent with chimeric MLAV mini-genomes containing EBOV or MARV leader and trailer sequences, indicating that these viruses are evolutionally and functionally closely related. Finally, MLAV glycoprotein-typed pseudo-types transduced cell lines derived from humans, monkeys, dogs, hamsters and bats, implying a broad species cell tropism with a high risk of interspecies spillover transmission.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the findings of this study are available from the corresponding author upon request. The GenBank accession number for the genome sequence of MLAV is KX371887.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Feldmann, H., Sanchez, A. & Geisbert, T. W. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) Ch. Filoviridae: Marburg and Ebola viruses, 923–956 (Lippincott Williams & Wilkins, Philadelphia, 2013).

  2. 2.

    Radoshitzky, S. R., Bavari, S., Jahrling, P. B. & Kuhn, J. H. in Medical Aspects of Biological Warfare (ed. Garr, J. H.) Ch. Filoviruses, 569–614 (Borden Institute, Fort Sam Houston, 2018).

  3. 3.

    He, B. et al. Filovirus RNA in fruit bats, China. Emerg. Infect. Dis. 21, 1675–1677 (2015).

  4. 4.

    Yang, X. L. et al. Genetically diverse filoviruses in rousettus and eonycteris spp. bats, China, 2009 and 2015. Emerg. Infect. Dis. 23, 482–486 (2017).

  5. 5.

    Kemenesi, G. et al. Re-emergence of Lloviu virus in Miniopterus schreibersii bats, Hungary, 2016. Emerg. Microbes Infect. 7, 66 (2018).

  6. 6.

    Kuhn, J. H. et al. in Classification and Nomenclature of Viruses. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses (eds King, A. M. Q., Adams, M. J., Carstens, E. B. & Lefkowitz, E. J.) Ch. Filoviridae, 665–671 (Academic Press, London, 2012).

  7. 7.

    Bao, Y. et al. Implementation of objective PASC-derived taxon demarcation criteria for official classification of filoviruses. Viruses 9, 105 (2017).

  8. 8.

    Amarasinghe, G. K. et al. Taxonomy of the order Mononegavirales: update 2018. Arch. Virol. 163, 2283–2294 (2018).

  9. 9.

    Shi, M. et al. The evolutionary history of vertebrate RNA viruses. Nature 556, 197–202 (2018).

  10. 10.

    Miller, E. H. et al. Ebola virus entry requires the host-programmed recognition of an intracellular receptor. EMBO J. 31, 1947–1960 (2012).

  11. 11.

    Hoffmann, M., Gonzalez Hernandez, M., Berger, E., Marzi, A. & Pohlmann, S. The glycoproteins of all filovirus species use the same host factors for entry into bat and human cells but entry efficiency is species dependent. PLoS. ONE 11, e0149651 (2016).

  12. 12.

    Carette, J. E. et al. Ebola virus entry requires the cholesterol transporter Niemann–Pick C1. Nature 477, 340–343 (2011).

  13. 13.

    Côté, M. et al. Small molecule inhibitors reveal Niemann–Pick C1 is essential for Ebola virus infection. Nature 477, 344–348 (2011).

  14. 14.

    Towner, J. S. et al. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Path. 5, e1000536 (2009).

  15. 15.

    Schuh, A. J., Amman, B. R. & Towner, J. S. Filoviruses and bats. Microbiol. Aus. 38, 12–16 (2017).

  16. 16.

    Olival, K. J. & Hayman, D. T. Filoviruses in bats: current knowledge and future directions. Viruses 6, 1759–1788 (2014).

  17. 17.

    Laing, E. D. et al. Serologic evidence of fruit bat exposure to filoviruses, Singapore, 2011-2016. Emerg. Infect. Dis. 24, 114–117 (2018).

  18. 18.

    Leroy, E. M. et al. Fruit bats as reservoirs of Ebola virus. Nature 438, 575–576 (2005).

  19. 19.

    Negredo, A. et al. Discovery of an ebolavirus-like filovirus in europe. PLoS Pathog. 7, e1002304 (2011).

  20. 20.

    Jayme, S. I. et al. Molecular evidence of Ebola Reston virus infection in Philippine bats. Virol. J. 12, 107 (2015).

  21. 21.

    Yuan, J., Zhang, Y., Li, J., Wang, L. F. & Shi, Z. Serological evidence of ebolavirus infection in bats, China. Virol. J. 9, 236 (2012).

  22. 22.

    Mühlberger, E. Filovirus replication and transcription. Future Virol. 2, 205–215 (2007).

  23. 23.

    Hartman, A. L., Towner, J. S. & Nichol, S. T. A C-terminal basic amino acid motif of Zaire ebolavirus VP35 is essential for type I interferon antagonism and displays high identity with the RNA-binding domain of another interferon antagonist, the NS1 protein of influenza A virus. Virology 328, 177–184 (2004).

  24. 24.

    Edwards, M. R. et al. Differential regulation of interferon responses by ebola and marburg virus VP35 proteins. Cell Rep. 14, 1632–1640 (2016).

  25. 25.

    Valmas, C. et al. Marburg virus evades interferon responses by a mechanism distinct from Ebola virus. PLoS Pathog. 6, e1000721 (2010).

  26. 26.

    Kuhn, J. H. et al. Conserved receptor-binding domains of Lake Victoria marburgvirus and Zaire ebolavirus bind a common receptor. J. Biol. Chem. 281, 15951–15958 (2006).

  27. 27.

    Wang, H. et al. Ebola viral glycoprotein bound to its endosomal receptor niemann-pick C1. Cell 164, 258–268 (2016).

  28. 28.

    Thomas, H. & Groseth, A. (eds) Ebolaviruses, 53–78 (Humana Press, New York, 2017).

  29. 29.

    Theriault, S., Groseth, A., Neumann, G., Kawaoka, Y. & Feldmann, H. Rescue of Ebola virus from cDNA using heterologous support proteins. Virus Res. 106, 43–50 (2004).

  30. 30.

    Watt, A. et al. A novel life cycle modeling system for Ebola virus shows a genome length-dependent role of VP24 in virus infectivity. J. Virol. 88, 10511–10524 (2014).

  31. 31.

    Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

  32. 32.

    Li, Y. et al. Host range, prevalence, and genetic diversity of adenoviruses in bats. J. Virol. 84, 3889–3897 (2010).

  33. 33.

    Albariño, C. G. et al. Development of a reverse genetics system to generate recombinant Marburg virus derived from a bat isolate. Virology 446, 230–237 (2013).

  34. 34.

    Brouillette, R. B. & Maury, W. Production of filovirus glycoprotein-pseudotyped vesicular stomatitis virus for study of filovirus entry mechanisms. Methods Mol. Biol. 1628, 53–63 (2017).

  35. 35.

    Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

Download references


This study was supported in part by the strategic priority research programme of the Chinese Academy of Sciences (no. XDB29010000 to Z-L.S.), Singapore National Research Foundation grants (nos. NRF2012NRF-CRP001-056 and NRF2016NRF-NSFC002-013 to L.-F.W.) and a Singapore MINDEF grant (no. MINDEF-NUS-DIRP/2015/04 to L.-F.W. and D.E.A.). X.L.Y. is supported by the Visiting Scientist Fellowship from the Chinese Academy of Sciences. We thank T. Hoenen and H. Feldmann for providing plasmids from which the relevant EBOV genes were derived for this study.

Author information

Author notes

  1. These authors contributed equally: Xing-Lou Yang, Chee Wah Tan.


  1. CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China

    • Xing-Lou Yang
    • , Ren-Di Jiang
    • , Bei Li
    • , Wei Zhang
    • , Yan Zhu
    • , Peng Zhou
    • , Xiang-Ling Liu
    • , Wuxiang Guan
    •  & Zheng-Li Shi
  2. Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore

    • Xing-Lou Yang
    • , Chee Wah Tan
    • , Danielle E. Anderson
    • , Xiao Fang Lim
    •  & Lin-Fa Wang
  3. University of Chinese Academy of Sciences, Beijing, China

    • Ren-Di Jiang
  4. Guangdong Institute of Applied Biological Resources, Guangzhou, China

    • Libiao Zhang
  5. Wuhan University, Wuhan, China

    • Shi-Yue Li
  6. Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China

    • Yun-Zhi Zhang
  7. Dali University, Dali, China

    • Yun-Zhi Zhang


  1. Search for Xing-Lou Yang in:

  2. Search for Chee Wah Tan in:

  3. Search for Danielle E. Anderson in:

  4. Search for Ren-Di Jiang in:

  5. Search for Bei Li in:

  6. Search for Wei Zhang in:

  7. Search for Yan Zhu in:

  8. Search for Xiao Fang Lim in:

  9. Search for Peng Zhou in:

  10. Search for Xiang-Ling Liu in:

  11. Search for Wuxiang Guan in:

  12. Search for Libiao Zhang in:

  13. Search for Shi-Yue Li in:

  14. Search for Yun-Zhi Zhang in:

  15. Search for Lin-Fa Wang in:

  16. Search for Zheng-Li Shi in:


X.-L.Y., L.-F.W. and Z.-L.S. conceived the study. X.-L.Y., C.W.T., R.-D.J., B.L., W.Z., Y.Z., X.F.L., P.Z., X.-L.L., L.Z., S.-Y.L. and Y.-Z.Z. conducted the experiments. W.G., Z.-L.S. and L.-F.W. provided resources and reagents. X.-L.Y., C.W.T. and D.E.A. analysed the data. X.-L.Y., C.W.T., D.E.A., Z.-L.S. and L.-F.W. prepared the manuscript. All authors read, edited and approved the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Lin-Fa Wang or Zheng-Li Shi.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–5, and Supplementary Tables 1 and 2.

  2. Reporting Summary

About this article

Publication history