The vast majority of bacteria, including human pathogens and microbiome species, lack genetic tools needed to systematically associate genes with phenotypes. This is the major impediment to understanding the fundamental contributions of genes and gene networks to bacterial physiology and human health. Clustered regularly interspaced short palindromic repeats interference (CRISPRi), a versatile method of blocking gene expression using a catalytically inactive Cas9 protein (dCas9) and programmable single guide RNAs, has emerged as a powerful genetic tool to dissect the functions of essential and non-essential genes in species ranging from bacteria to humans1,2,3,4,5,6. However, the difficulty of establishing effective CRISPRi systems across bacteria is a major barrier to its widespread use to dissect bacterial gene function. Here, we establish ‘Mobile-CRISPRi’, a suite of CRISPRi systems that combines modularity, stable genomic integration and ease of transfer to diverse bacteria by conjugation. Focusing predominantly on human pathogens associated with antibiotic resistance, we demonstrate the efficacy of Mobile-CRISPRi in gammaproteobacteria and Bacillales Firmicutes at the individual gene scale, by examining drug–gene synergies, and at the library scale, by systematically phenotyping conditionally essential genes involved in amino acid biosynthesis. Mobile-CRISPRi enables genetic dissection of non-model bacteria, facilitating analyses of microbiome function, antibiotic resistances and sensitivities, and comprehensive screens for host–microorganism interactions.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the findings of this study are available from the corresponding authors upon request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

  2. 2.

    Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

  3. 3.

    Mimee, M., Tucker, A. C., Voigt, C. A. & Lu, T. K. Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota. Cell Syst. 1, 62–71 (2015).

  4. 4.

    Peters, J. M. et al. A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. Cell 165, 1493–1506 (2016).

  5. 5.

    Rock, J. M. et al. Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform. Nat. Microbiol. 2, 16274 (2017).

  6. 6.

    Tan, S. Z., Reisch, C. R. & Prather, K. L. J. A robust CRISPR interference gene repression system in Pseudomonas. J. Bacteriol. 200, e00575-17 (2018).

  7. 7.

    Liu, X. et al. High‐throughput CRISPRi phenotyping identifies new essential genes in Streptococcus pneumoniae. Mol. Syst. Biol. 13, 931 (2017).

  8. 8.

    Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).

  9. 9.

    Jost, M. et al. Combined CRISPRi/a-based chemical genetic screens reveal that rigosertib is a microtubule-destabilizing agent. Mol. Cell 68(1), 210–223 (2017).

  10. 10.

    Vigouroux, A., Oldewurtel, E., Cui, L., Bikard, D. & Van Teeffelen, S. Tuning dCas9’s ability to block transcription enables robust, noiseless knockdown of bacterial genes. Mol. Syst. Biol. 14, e7899 (2018).

  11. 11.

    Zhao, H. et al. Depletion of undecaprenyl pyrophosphate phosphatases disrupts cell envelope biogenesis in Bacillus subtilis. J. Bacteriol. 198, 2925–2935 (2016).

  12. 12.

    van Opijnen, T., Bodi, K. L. & Camilli, A. Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat. Methods 6, 767–772 (2009).

  13. 13.

    Ji, W. et al. Specific gene repression by CRISPRi system transferred through bacterial conjugation. ACS Synth. Biol. 3, 929–931 (2014).

  14. 14.

    Peters, J. E. Tn7. Microbiol. Spectr. 2, MDNA-30010-2014 (2014).

  15. 15.

    Choi, K.-H. et al. A Tn7-based broad-range bacterial cloning and expression system. Nat. Methods 2, 443–448 (2005).

  16. 16.

    Johnson, C. M. & Grossman, A. D. Integrative and conjugative elements (ICEs): what they do and how they work. Annu. Rev. Genet. 49, 577–601 (2015).

  17. 17.

    Brophy, J. A. N. et al. Engineered integrative and conjugative elements for efficient and inducible DNA transfer to undomesticated bacteria. Nat. Microbiol. 3, 1043–1053 (2018).

  18. 18.

    Bokulich, N. A. & Mills, D. A. Facility-specific ‘house’ microbiome drives microbial landscapes of artisan cheesemaking plants. Appl. Environ. Microbiol. 79, 5214–5223 (2013).

  19. 19.

    Cardona, S. T., Selin, C. & Gislason, A. S. Genomic tools to profile antibiotic mode of action. Crit. Rev. Microbiol. 41, 465–472 (2015).

  20. 20.

    Baccanari, D., Phillips, A., Smith, S., Sinski, D. & Burchall, J. Purification and properties of Escherichia coli dihydrofolate reductase. Biochemistry 14, 5267–5273 (1975).

  21. 21.

    McMahon, S. A. et al. Extensive DNA mimicry by the ArdA anti-restriction protein and its role in the spread of antibiotic resistance. Nucleic Acids Res. 37, 4887–4897 (2009).

  22. 22.

    Peters, J. E., Makarova, K. S., Shmakov, S. & Koonin, E. V. Recruitment of CRISPR–Cas systems by Tn7-like transposons. Proc. Natl Acad. Sci. USA 114, E7358–E7366 (2017).

  23. 23.

    Choi, K.-H. & Schweizer, H. P. Mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat. Protoc. 1, 153–161 (2006).

  24. 24.

    Ferrières, L. et al. Silent mischief: bacteriophage Mu insertions contaminate products of Escherichia coli random mutagenesis performed using suicidal transposon delivery plasmids mobilized by broad-host-range RP4 conjugative machinery. J. Bacteriol. 192, 6418–6427 (2010).

  25. 25.

    Choi, K.-H. et al. Genetic tools for select-agent-compliant manipulation of Burkholderia pseudomallei. Appl. Environ. Microbiol. 74, 1064–1075 (2008).

  26. 26.

    Auchtung, J. M., Lee, C. A., Monson, R. E., Lehman, A. P. & Grossman, A. D. Regulation of a Bacillus subtilis mobile genetic element by intercellular signaling and the global DNA damage response. Proc. Natl Acad. Sci. USA 102, 12554–12559 (2005).

  27. 27.

    Auchtung, J. M., Lee, C. A., Garrison, K. L. & Grossman, A. D. Identification and characterization of the immunity repressor (ImmR) that controls the mobile genetic element ICEBs1 of Bacillus subtilis. Mol. Microbiol. 64, 1515–1528 (2007).

  28. 28.

    Wiegand, I., Hilpert, K. & Hancock, R. E. W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3, 163–175 (2008).

  29. 29.

    Koo, B.-M. et al. Construction and analysis of two genome-scale deletion libraries for Bacillus subtilis. Cell Syst. 4, 291–305 (2017).

  30. 30.

    Kritikos, G. et al. A tool named Iris for versatile high-throughput phenotyping in microorganisms. Nat. Microbiol. 2, 17014 (2017).

Download references


We thank J. Goldberg (Emory University) and H. Schweizer (University of Florida) for Tn7 plasmids, L. (Stanley) Qi (Stanford University) for a plasmid encoding human codon-optimized dCas9, the American Type Culture Collection, H. Mobley (University of Michigan), B. DeGrado (University of California, San Francisco), K. C. Huang (Stanford University), A. Banta (Stanford University) and P. Welander (Stanford University) for strains, J. Garbarino (University of California, San Francisco) and M. Jost (University of California, San Francisco) for help with flow cytometry, and the C.A.G. and O.S.R. labs for helpful comments. This work was supported by the NIH F32 GM108222 (to J.M.P.), the US Department of Agriculture National Institute of Food and Agriculture Hatch Project NYC-189438 (to J.E.P.), NIH R35 GM118061 and Innovative Genomics Institute, UC Berkeley (to C.A.G.), and NIAID R01 AI128214, Chan-Zuckerberg Biohub, CF Foundation Research Development Program, and Gilead Sciences Research Scholars Program in Cystic Fibrosis (to O.S.R).

Author information

Author notes

    • Jason M. Peters

    Present address: Pharmaceutical Sciences Division, and Departments of Bacteriology, and of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA


  1. Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA

    • Jason M. Peters
    • , Byoung-Mo Koo
    • , Ramiro Patino
    • , Cameron C. Hearne
    • , Jiuxin Qu
    • , Yuki F. Inclan
    • , John S. Hawkins
    • , Candy H. S. Lu
    • , Melanie R. Silvis
    • , Hendrik Osadnik
    • , Joanne N. Engel
    • , Carol A. Gross
    •  & Oren S. Rosenberg
  2. Department of Medicine, University of California, San Francisco, San Francisco, CA, USA

    • Ramiro Patino
    • , Jiuxin Qu
    • , Yuki F. Inclan
    • , Joanne N. Engel
    •  & Oren S. Rosenberg
  3. Division of Biological Sciences, University of California, San Diego, San Diego, CA, USA

    • Gary E. Heussler
    •  & Rachel J. Dutton
  4. Center for Microbiome Innovation, Jacobs School of Engineering, University of California, San Diego, San Diego, CA, USA

    • Gary E. Heussler
    •  & Rachel J. Dutton
  5. Department of Clinical Laboratory, The Third People’s Hospital of Shenzhen, Shenzhen, China

    • Jiuxin Qu
  6. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA

    • M. Michael Harden
    •  & Alan D. Grossman
  7. Department of Microbiology, Cornell University, Ithaca, NY, USA

    • Joseph E. Peters
  8. Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA

    • Carol A. Gross
  9. California Institute of Quantitative Biology, University of California, San Francisco, San Francisco, CA, USA

    • Carol A. Gross


  1. Search for Jason M. Peters in:

  2. Search for Byoung-Mo Koo in:

  3. Search for Ramiro Patino in:

  4. Search for Gary E. Heussler in:

  5. Search for Cameron C. Hearne in:

  6. Search for Jiuxin Qu in:

  7. Search for Yuki F. Inclan in:

  8. Search for John S. Hawkins in:

  9. Search for Candy H. S. Lu in:

  10. Search for Melanie R. Silvis in:

  11. Search for M. Michael Harden in:

  12. Search for Hendrik Osadnik in:

  13. Search for Joseph E. Peters in:

  14. Search for Joanne N. Engel in:

  15. Search for Rachel J. Dutton in:

  16. Search for Alan D. Grossman in:

  17. Search for Carol A. Gross in:

  18. Search for Oren S. Rosenberg in:


J.M.P., B.-M.K., M.M.H., A.D.G., J.E.P., J.N.E., R.J.D., C.A.G. and O.S.R. designed the study. J.M.P., B.-M.K., R.P., G.E.H., C.C.H., Y.F.I., C.H.S.L., J.Q. and M.R.S. performed the experiments. J.M.P., B.-M.K., R.P., G.E.H., Y.F.I. and J.S.H. analysed the data. J.M.P., B.-M.K., H.O., C.A.G. and O.S.R. wrote the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Jason M. Peters or Carol A. Gross or Oren S. Rosenberg.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–11.

  2. Reporting Summary

  3. Supplementary Table 1

    Primers and oligos used in this study.

  4. Supplementary Table 2

    Growth phenotypes for E. cloacae CRISPRi strains in minimal media (pooled screen).

  5. Supplementary Table 3

    Growth phenotypes for E. cloacae CRISPRi strains in minimal media (arrayed screen).

  6. Supplementary Table 4

    Plasmids used in this study.

  7. Supplementary Table 5

    Strains used in this study.

  8. Supplementary Table 6

    Next generation sequencing oligos used in this study.

  9. Supplementary Table 7

    MIC values for folA knockdown strains.

About this article

Publication history