Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

TesG is a type I secretion effector of Pseudomonas aeruginosa that suppresses the host immune response during chronic infection


Pseudomonas aeruginosa is a versatile Gram-negative pathogen with intricate intracellular regulatory networks that enable it to adapt to and flourish in a variety of biotic and abiotic habitats. However, the mechanism permitting the persistent survival of P. aeruginosa within host tissues and causing chronic symptoms still remains largely elusive. By using in situ RNA sequencing, here we show that P. aeruginosa adopts different metabolic pathways and virulence repertoires to dominate the progression of acute and chronic lung infections. Notably, a virulence factor named TesG, which is controlled by the vital quorum-sensing system and secreted by the downstream type I secretion system, can suppress the host inflammatory response and facilitate the development of chronic lung infection. Mechanically, TesG can enter the intracellular compartment of macrophages through clathrin-mediated endocytosis, competitively inhibit the activity of eukaryotic small GTPase and thus suppress subsequent neutrophil influx, cell cytoskeletal rearrangement of macrophages and the secretion of cytokines and chemokines. Therefore, the identification of TesG in this study reveals a type I secretion apparatus of P. aeruginosa that functions during the host–pathogen interaction, and may open an avenue for the further mechanistic study of chronic respiratory diseases and the development of antibacterial therapy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Establishment of the P. aeruginosa chronic lung infection model and in situ RNA-Seq analyses.
Fig. 2: TesG is mainly expressed during chronic infection and secreted by the downstream Tes-T1SS under rhl-QS regulation.
Fig. 3: TesG suppresses neutrophil influx responses to PAO1 infection.
Fig. 4: TesG induces behavioural alterations in MH-S macrophages.
Fig. 5: TesG suppresses RhoA activation.
Fig. 6: RhoA plays a role in mediating P. aeruginosa infection-induced inflammatory responses.

Data availability

Large screening datasets are provided in the Supplementary Information. The RNA-Seq data for P. aeruginosa PAO1 are deposited in the NCBI database under accession numbers SRX2662725, SRX2662726, SRX2662727 and SRX2662728. Additional data that support the findings of this study are available from the corresponding author X. Zhou upon request.


  1. 1.

    Stover, C. K. et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406, 959–964 (2000).

    CAS  Article  Google Scholar 

  2. 2.

    Ventre, I. et al. Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc. Natl Acad. Sci. USA 103, 171–176 (2006).

    CAS  Article  Google Scholar 

  3. 3.

    Mathee, K. et al. Dynamics of Pseudomonas aeruginosa genome evolution. Proc. Natl Acad. Sci. USA 105, 3100–3105 (2008).

    CAS  Article  Google Scholar 

  4. 4.

    Lyczak, J. B., Cannon, C. L. & Pier, G. B. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect. 2, 1051–1060 (2000).

    CAS  Article  Google Scholar 

  5. 5.

    Yonker, L. M., Cigana, C., Hurley, B. P. & Bragonzi, A. Host–pathogen interplay in the respiratory environment of cystic fibrosis. J. Cyst. Fibros. 14, 431–439 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Balasubramanian, D., Schneper, L., Kumari, H. & Mathee, K. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res. 41, 1–20 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    Hauser, A. R. The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat. Rev. Microbiol. 7, 654–665 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    Dietsche, T. et al. Structural and functional characterization of the bacterial type III secretion export apparatus. PLoS Pathog. 12, e1006071 (2016).

    Article  Google Scholar 

  9. 9.

    Mougous, J. D. et al. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312, 1526–1530 (2006).

    CAS  Article  Google Scholar 

  10. 10.

    Hood, R. D. et al. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7, 25–37 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    Jiang, F., Waterfield, N. R., Yang, J., Yang, G. & Jin, Q. A Pseudomonas aeruginosa type VI secretion phospholipase D effector targets both prokaryotic and eukaryotic cells. Cell Host Microbe 15, 600–610 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    Goodman, A. L. et al. A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev. Cell 7, 745–754 (2004).

    CAS  Article  Google Scholar 

  13. 13.

    Allsoppc, L. P. et al. RsmA and AmrZ orchestrate the assembly of all three type VI secretion systems in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 114, 7707–7712 (2017).

    Article  Google Scholar 

  14. 14.

    Pessi, G. et al. The global posttranscriptional regulator RsmA modulates production of virulence determinants and N-acylhomoserine lactones in Pseudomonas aeruginosa. J. Bacteriol. 183, 6676–6683 (2001).

    CAS  Article  Google Scholar 

  15. 15.

    Schuster, M., Lostroh, C. P., Ogi, T. & Greenberg, E. P. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J. Bacteriol. 185, 2066–2079 (2003).

    CAS  Article  Google Scholar 

  16. 16.

    Lesic, B., Starkey, M., He, J., Hazan, R. & Rahme, L. G. Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis. Microbiology 155, 2845–2855 (2009).

    CAS  Article  Google Scholar 

  17. 17.

    Rieber, N., Hector, A., Carevic, M. & Hartl, D. Current concepts of immune dysregulation in cystic fibrosis. Int. J. Biochem. Cell. Biol. 52, 108–112 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    Facchini, M., De Fino, I., Riva, C. & Bragonzi, A. Long term chronic Pseudomonas aeruginosa airway infection in mice. J. Vis. Exp. 85, e51019 (2014).

    Google Scholar 

  19. 19.

    Avican, K. et al. Reprogramming of Yersinia from virulent to persistent mode revealed by complex in vivo RNA-seq analysis. PLoS Pathog. 11, e1004600 (2015).

    Article  Google Scholar 

  20. 20.

    Son, M. S., Matthews, W. J. Jr, Kang, Y., Nguyen, D. T. & Hoang, T. T. In vivo evidence of Pseudomonas aeruginosa nutrient acquisition and pathogenesis in the lungs of cystic fibrosis patients. Infect. Immun. 75, 5313–5324 (2007).

    CAS  Article  Google Scholar 

  21. 21.

    Goo, E., An, J. H., Kang, Y. & Hwang, I. Control of bacterial metabolism by quorum sensing. Trends Microbiol. 23, 567–576 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    Duong, F., Lazdunski, A., Cami, B. & Murgier, M. Sequence of a cluster of genes controlling synthesis and secretion of alkaline protease in Pseudomonas aeruginosa: relationships to other secretory pathways. Gene 121, 47–54 (1992).

    CAS  Article  Google Scholar 

  23. 23.

    Duong, F. et al. The AprX protein of Pseudomonas aeruginosa: a new substrate for the Apr type I secretion system. Gene 262, 147–153 (2001).

    CAS  Article  Google Scholar 

  24. 24.

    Filloux, A. Protein secretion systems in Pseudomonas aeruginosa: an essay on diversity, evolution, and function. Front. Microbiol. 2, 155 (2011).

    CAS  Article  Google Scholar 

  25. 25.

    Gilson, L., Mahanty, H. K. & Kolter, R. Four plasmid genes are required for colicin V synthesis, export, and immunity. J. Bacteriol. 169, 2466–2470 (1987).

    CAS  Article  Google Scholar 

  26. 26.

    Gilson, L., Mahanty, H. K. & Kolter, R. Genetic analysis of an MDR-like export system: the secretion of colicin V. EMBO J. 9, 3875–3884 (1990).

    CAS  Article  Google Scholar 

  27. 27.

    Guzzo, J., Pages, J. M., Duong, F., Lazdunski, A. & Murgier, M. Pseudomonas aeruginosa alkaline protease: evidence for secretion genes and study of secretion mechanism. J. Bacteriol. 173, 5290–5297 (1991).

    CAS  Article  Google Scholar 

  28. 28.

    Schuster, M. & Greenberg, E. P. Early activation of quorum sensing in Pseudomonas aeruginosa reveals the architecture of a complex regulon. BMC Genomics 8, 287 (2007).

    Article  Google Scholar 

  29. 29.

    Zhou, X. et al. MicroRNA-302b augments host defense to bacteria by regulating inflammatory responses via feedback to TLR/IRAK4 circuits. Nat. Commun. 5, 3619 (2014).

    Article  Google Scholar 

  30. 30.

    Balamayooran, G., Batra, S., Fessler, M. B., Happel, K. I. & Jeyaseelan, S. Mechanisms of neutrophil accumulation in the lungs against bacteria. Am. J. Respir. Cell Mol. Biol. 43, 5–16 (2010).

    CAS  Article  Google Scholar 

  31. 31.

    Weiss, G. & Schaible, U. E. Macrophage defense mechanisms against intracellular bacteria. Immunol. Rev. 264, 182–203 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    Souza, S. T. et al. Macrophage adhesion on fibronectin evokes an increase in the elastic property of the cell membrane and cytoskeleton: an atomic force microscopy study. Eur. Biophys. J. 43, 573–579 (2014).

    CAS  Article  Google Scholar 

  33. 33.

    Li, X. et al. Lyn delivers bacteria to lysosomes for eradication through TLR2-initiated autophagy related phagocytosis. PLoS Pathog. 12, e1005363 (2016).

    Article  Google Scholar 

  34. 34.

    May, R. C. & Machesky, L. M. Phagocytosis and the actin cytoskeleton. J. Cell Sci. 114, 1061–1077 (2001).

    CAS  Google Scholar 

  35. 35.

    Cromm, P. M. et al. Direct modulation of small GTPase activity and function. Angew. Chem. Int. Ed. Engl. 54, 13516–13537 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Aktories, K. Bacterial protein toxins that modify host regulatory GTPases. Nat. Rev. Microbiol. 9, 487–498 (2011).

    CAS  Article  Google Scholar 

  37. 37.

    Kristelly, R., Gao, G. & Tesmer, J. J. Structural determinants of RhoA binding and nucleotide exchange in leukemia-associated Rho guanine-nucleotide exchange factor. J. Biol. Chem. 279, 47352–47362 (2004).

    CAS  Article  Google Scholar 

  38. 38.

    Chen, Z. et al. Activated RhoA binds to the pleckstrin homology (PH) domain of PDZ-RhoGEF, a potential site for autoregulation. J. Biol. Chem. 285, 21070–21081 (2010).

    CAS  Article  Google Scholar 

  39. 39.

    Matsumura, F. & Hartshorne, D. J. Myosin phosphatase target subunit: many roles in cell function. Biochem. Biophys. Res. Commun. 369, 149–156 (2008).

    CAS  Article  Google Scholar 

  40. 40.

    Liu, J. & Lin, A. Role of JNK activation in apoptosis: a double-edged sword. Cell Res. 15, 36–42 (2005).

    Article  Google Scholar 

  41. 41.

    Marinissen, M. J. et al. The small GTP-binding protein RhoA regulates c-jun by a ROCK-JNK signaling axis. Mol. Cell 14, 29–41 (2004).

    CAS  Article  Google Scholar 

  42. 42.

    Yang, L. et al. Evolutionary dynamics of bacteria in a human host environment. Proc. Natl Acad. Sci. USA 108, 7481–7486 (2011).

    CAS  Article  Google Scholar 

  43. 43.

    Damkiaer, S., Yang, L., Molin, S. & Jelsbak, L. Evolutionary remodeling of global regulatory networks during long-term bacterial adaptation to human hosts. Proc. Natl Acad. Sci. USA 110, 7766–7771 (2013).

    CAS  Article  Google Scholar 

  44. 44.

    Jiricny, N. et al. Loss of social behaviours in populations of Pseudomonas aeruginosa infecting lungs of patients with cystic fibrosis. PLoS ONE 9, e83124 (2014).

    Article  Google Scholar 

  45. 45.

    Latifi, A., Foglino, M., Tanaka, K., Williams, P. & Lazdunski, A. A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol. Microbiol. 21, 1137–1146 (1996).

    CAS  Article  Google Scholar 

  46. 46.

    Wu, H. et al. Pseudomonas aeruginosa mutations in lasI and rhlI quorum sensing systems result in milder chronic lung infection. Microbiology 147, 1105–1113 (2001).

    CAS  Article  Google Scholar 

  47. 47.

    Schoehn, G. et al. Oligomerization of type III secretion proteins PopB and PopD precedes pore formation in Pseudomonas. EMBO J. 22, 4957–4967 (2003).

    CAS  Article  Google Scholar 

  48. 48.

    Ballister, E. R., Lai, A. H., Zuckermann, R. N., Cheng, Y. & Mougous, J. D. In vitro self-assembly of tailorable nanotubes from a simple protein building block. Proc. Natl Acad. Sci. USA 105, 3733–3738 (2008).

    CAS  Article  Google Scholar 

  49. 49.

    Hachani, A. et al. Type VI secretion system in Pseudomonas aeruginosa: secretion and multimerization of VgrG proteins. J. Biol. Chem. 286, 12317–12327 (2011).

    CAS  Article  Google Scholar 

  50. 50.

    Lemichez, E. & Aktories, K. Hijacking of Rho GTPases during bacterial infection. Exp. Cell Res. 319, 2329–2336 (2013).

    CAS  Article  Google Scholar 

  51. 51.

    Klesney-Tait, J. et al. Transepithelial migration of neutrophils into the lung requires TREM-1. J. Clin. Invest. 123, 138–149 (2013).

    CAS  Article  Google Scholar 

  52. 52.

    Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

    CAS  Article  Google Scholar 

  53. 53.

    Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).

    CAS  Article  Google Scholar 

  54. 54.

    Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001).

    CAS  Article  Google Scholar 

  55. 55.

    Windgassen, M., Urban, A. & Jaeger, K. E. Rapid gene inactivation in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 193, 201–205 (2000).

    CAS  Article  Google Scholar 

  56. 56.

    Zhou, X. et al. Transient receptor potential channel 1 deficiency impairs host defense and proinflammatory responses to bacterial infection by regulating protein kinase Calpha signaling. Mol. Cell. Biol. 35, 2729–2739 (2015).

    CAS  Article  Google Scholar 

  57. 57.

    Huang, D. W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Article  Google Scholar 

Download references


This work is supported by the National Natural Science Foundation of China (no. 31700111 to K.Z., no. 81302371 and no. 81672675 to Jing Li, no. 81202324 to X. Zhou and no. 31570534 to X. Zhang), the Excellent Young Scientist Foundation of Sichuan University (no. 2017SCU04A16 to X. Zhou), the Innovative Spark Foundation of Sichuan University (no. 2018SCUH0032 to X. Zhou) and the National Major Scientific and Technological Special Project for ‘Significant New Drugs Development’ (no. 2018ZX09201018-013 to X. Zhou).

Author information




K.Z., W.L., Jing Li, T.M., K.W., Y.Y., J.S.L, R.X., T.H., Y. Zhang, Y. Zhou, N.H., W.W., Z.W., J.Z., X. Zhang and X. Zhou performed and analysed the experiments. K.Z., W.L., B.Y. and X. Zhang performed the bioinformatics analyses. K.Z., X. Zhang and X. Zhou contributed to study design and data analysis. K.Z. and X. Zhou wrote the manuscript. Z.Z., Jiong Li and Y.-Q.W. provided critical resources and acquired data. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Xiuyue Zhang or Xikun Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–14, Supplementary Table 1, Supplementary Table 5, Supplementary References, uncropped blots.

Reporting Summary

Supplementary Table 2

Significantly upregulated genes of PAO1 during acute lung infection.

Supplementary Table 3

Significantly upregulated genes of PAO1 during chronic lung infection.

Supplementary Table 4

Significance ranking of upregulated operons of PAO1 during lung infections.

Supplementary Table 6

Mass spectrometry analysis of proteins included exclusively in TesG group.

Supplementary Table 7

Small GTPase superfamily proteins included exclusively in TesG group.

Supplementary Table 8

Strains, plasmids and primers used in this study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, K., Li, W., Li, J. et al. TesG is a type I secretion effector of Pseudomonas aeruginosa that suppresses the host immune response during chronic infection. Nat Microbiol 4, 459–469 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing