Abstract

Ammonia-oxidizing archaea of the phylum Thaumarchaeota are among the most abundant marine microorganisms1. These organisms thrive in the oceans despite ammonium being present at low nanomolar concentrations2,3. Some Thaumarchaeota isolates have been shown to utilize urea and cyanate as energy and N sources through intracellular conversion to ammonium4,5,6. Yet, it is unclear whether patterns observed in culture extend to marine Thaumarchaeota, and whether Thaumarchaeota in the ocean directly utilize urea and cyanate or rely on co-occurring microorganisms to break these substrates down to ammonium. Urea utilization has been reported for marine ammonia-oxidizing communities7,8,9,10, but no evidence of cyanate utilization exists for marine ammonia oxidizers. Here, we demonstrate that in the Gulf of Mexico, Thaumarchaeota use urea and cyanate both directly and indirectly as energy and N sources. We observed substantial and linear rates of nitrite production from urea and cyanate additions, which often persisted even when ammonium was added to micromolar concentrations. Furthermore, single-cell analysis revealed that the Thaumarchaeota incorporated ammonium-, urea- and cyanate-derived N at significantly higher rates than most other microorganisms. Yet, no cyanases were detected in thaumarchaeal genomic data from the Gulf of Mexico. Therefore, we tested cyanate utilization in Nitrosopumilus maritimus, which also lacks a canonical cyanase, and showed that cyanate was oxidized to nitrite. Our findings demonstrate that marine Thaumarchaeota can use urea and cyanate as both an energy and N source. On the basis of these results, we hypothesize that urea and cyanate are substrates for ammonia-oxidizing Thaumarchaeota throughout the ocean.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

All sequence data and thaumarchaeal MAGs generated in this study are deposited in NCBI under BioProject number: PRJNA397176. Metatranscriptomes are deposited under BioSample numbers SAMN07461123SAMN07461125; 16S amplicon sequencing under SAMN07461114SAMN07461122; metagenomes under SAMN10227777SAMN10227781 and MAGs under SAMN10233969SAMN10233974. Accession numbers of sequences used for tree calculations (16S rRNA gene, amoA, UreC, CynS, and genome sequences) are given in Supplementary Table 9. CTD data, measured nutrient concentrations, process rates, Thaumarchaeota relative abundance based on 16S rRNA gene amplicon sequencing and Thaumarchaeota-specific CARD-FISH counts are given in Supplementary Table 10.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Francis, C. A., Roberts, K. J., Beman, J. M., Santoro, A. E. & Oakley, B. B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl Acad. Sci. USA 102, 14683–14688 (2005).

  2. 2.

    Martens-Habbena, W., Berube, P. M., Urakawa, H., de la Torre, J. R. & Stahl, D. A. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461, 976–979 (2009).

  3. 3.

    Horak, R. E. A. et al. Ammonia oxidation kinetics and temperature sensitivity of a natural marine community dominated by Archaea. ISME J. 7, 2023–2033 (2013).

  4. 4.

    Qin, W. et al. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. Proc. Natl Acad. Sci. USA 111, 12504–12509 (2014).

  5. 5.

    Bayer, B. et al. Physiological and genomic characterization of two novel marine thaumarchaeal strains indicates niche differentiation. ISME J. 10, 1051–1063 (2016).

  6. 6.

    Palatinszky, M. et al. Cyanate as an energy source for nitrifiers. Nature 524, 105–108 (2015).

  7. 7.

    Alonso-Saez, L. et al. Role for urea in nitrification by polar marine Archaea. Proc. Natl Acad. Sci. USA 109, 17989–17994 (2012).

  8. 8.

    Connelly, T. L., Baer, S. E., Cooper, J. T., Bronk, D. A. & Wawrik, B. Urea uptake and carbon fixation by marine pelagic bacteria and archaea during the Arctic summer and winter seasons. Appl. Environ. Microbiol. 80, 6013–6022 (2014).

  9. 9.

    Tolar, B. B., Wallsgrove, N. J., Popp, B. N. & Hollibaugh, J. T. Oxidation of urea-derived nitrogen by thaumarchaeota-dominated marine nitrifying communities. Environ. Microbiol. 19, 4838–4850 (2017).

  10. 10.

    Santoro, A. E. et al. Thaumarchaeal ecotype distributions across the equatorial Pacific Ocean and their potential roles in nitrification and sinking flux attenuation. Limnol. Oceanogr. 62, 1984–2003 (2017).

  11. 11.

    Wuchter, C. et al. Archaeal nitrification in the ocean. Proc. Natl Acad. Sci. USA 103, 12317–12322 (2006).

  12. 12.

    Sipler, R. E. & Bronk, D. A. in Biogeochemistry of Marine Dissolved Organic Matter 2nd edn (eds Hansell, D. A. & Carlson, C. A.) Ch. 4 (Elsevier, San Diego, 2014).

  13. 13.

    Widner, B., Mulholland, M. R. & Mopper, K. Distribution, sources, and sinks of cyanate in the coastal North Atlantic Ocean. Environ. Sci. Technol. Lett. 3, 297–302 (2016).

  14. 14.

    Widner, B. & Mulholland, M. R. Cyanate distribution and uptake in North Atlantic coastal waters. Limnol. Oceanogr. 62, 2538–2549 (2017).

  15. 15.

    Widner, B., Mordy, C. W. & Mulholland, M. R. Cyanate distribution and uptake above and within the Eastern Tropical South Pacific oxygen deficient zone. Limnol. Oceanogr. 63, S177–S192 (2018).

  16. 16.

    Antia, N. J., Harrison, P. J. & Oliveira, L. The role of dissolved organic nitrogen in phytoplankton nutrition, cell biology and ecology. Phycologia 30, 1–89 (1991).

  17. 17.

    Dirnhuber, P. & Schütz, F. The isomeric transformation of urea into ammonium cyanate in aqueous solutions. Biochem. J. 42, 628–632 (1948).

  18. 18.

    Liu, K.-K., Atkinson, L., Quiñones, R. & Talaue-McManus, L. Carbon and Nutrient Fluxes in Continental Margins - A Global Synthesis (Springer, Berlin, 2010).

  19. 19.

    Rabalais, N. N., Turner, R. E. & Wiseman, W. J. Hypoxia in the Gulf of Mexico. J. Environ. Qual. 30, 320–329 (2001).

  20. 20.

    Tolar, B. B., King, G. M. & Hollibaugh, J. T. An analysis of Thaumarchaeota populations from the northern Gulf of Mexico. Front. Microbiol. 4, 72 (2013).

  21. 21.

    Bristow, L. A. et al. Biogeochemical and metagenomic analysis of nitrite accumulation in the Gulf of Mexico hypoxic zone. Limnol. Oceanogr. 60, 1733–1750 (2015).

  22. 22.

    Woebken, D., Fuchs, B. M., Kuypers, M. M. M. & Amann, R. Potential interactions of particle-associated anammox bacteria with bacterial and archaeal partners in the Namibian upwelling system. Appl. Environ. Microbiol. 73, 4648–4657 (2007).

  23. 23.

    Galand, P. E., Gutiérrez-Provecho, C., Massana, R., Gasol, J. M. & Casamayor, E. O. Inter-annual recurrence of archaeal assemblages in the coastal NW Mediterranean Sea (Blanes Bay Microbial Observatory). Limnol. Oceanogr. 55, 2117–2125 (2010).

  24. 24.

    Liu, Q. et al. Light and temperature control the seasonal distribution of thaumarchaeota in the South Atlantic bight. ISME J. 12, 1473–1485 (2018).

  25. 25.

    Carini, S. A., McCarthy, M. J. & Gardner, W. S. An isotope dilution method to measure nitrification rates in the northern Gulf of Mexico and other eutrophic waters. Cont. Shelf Res. 30, 1795–1801 (2010).

  26. 26.

    Ward, B. B. in Nitrogen in the Marine Environment (eds Capone, D. G. et al.) 199–261 (Elsevier, Amsterdam, 2008).

  27. 27.

    Lam, P. et al. Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc. Natl Acad. Sci. USA 106, 4752–4757 (2009).

  28. 28.

    Koch, H. et al. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. Proc. Natl Acad. Sci. USA 112, 11371–11376 (2015).

  29. 29.

    Herndl, G. J. et al. Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean. Appl. Environ. Microbiol. 71, 2303–2309 (2005).

  30. 30.

    Holmes, R. M., Aminot, A., Kérouel, R., Hooker, B. A. & Peterson, B. J. A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can. J. Fish. Aquat. Sci. 56, 1801–1808 (1999).

  31. 31.

    Grasshoff, K., Kremling, K. & Ehrhardt, M. Methods of Seawater Analysis (Wiley-VCH, Weinheim, 1999).

  32. 32.

    Mulvenna, P. F. & Savidge, G. A modified manual method for the determination of urea in seawater using diacetylmonoxime reagent. Estuar. Coast. Shelf Sci. 34, 429–438 (1992).

  33. 33.

    Widner, B., Mulholland, M. R. & Mopper, K. Chromatographic determination of nanomolar cyanate concentrations in estuarine and sea waters by precolumn fluorescence derivatization. Anal. Chem. 85, 6661–6666 (2013).

  34. 34.

    Braman, R. S. & Hendrix, S. A. Nanogram nitrite and nitrate determination in environmental and biological materials by vanadium(III) reduction with chemiluminescence detection. Anal. Chem. 61, 2715–2718 (1989).

  35. 35.

    Seidel, M. et al. Composition and transformation of dissolved organic matter in the Baltic Sea. Front. Earth Sci. https://doi.org/10.3389/feart.2017.00031 (2017).

  36. 36.

    De Brabandere, L., L., B. T., Revsbech, N. P. & Foadi, R. A critical assessment of the occurrence and extend of oxygen contamination during anaerobic incubations utilizing commercially available vials. J. Microbiol. Methods 88, 147–154 (2012).

  37. 37.

    Garcia, H. E. & Gordon, L. I. Oxygen solubility in seawater: better fitting equations. Limnol. Oceanogr. 37, 1307–1312 (1992).

  38. 38.

    Füssel, J. et al. Nitrite oxidation in the Namibian oxygen minimum zone. ISME J. 6, 1200–1209 (2012).

  39. 39.

    Zhang, L., Altabet, M. A., Wu, T. & Hadas, O. Sensitive measurement of NH4 + 15N/14N (δ15NH4 +) at natural abundance levels in fresh and saltwaters. Anal. Chem. 79, 5589–5595 (2007).

  40. 40.

    Torres, M. E., Mix, A. C. & Rugh, W. D. Precise δ13C analysis of dissolved inorganic carbon in natural waters using automated headspace sampling and continuous-flow mass spectrometry. Limnol. Oceanogr. Methods 3, 349–360 (2005).

  41. 41.

    Granger, J. & Sigman, D. M. Removal of nitrite with sulfamic acid for nitrate N and O isotope analysis with the denitrifier method. Rapid Commun. Mass Spectrom. 23, 3753–3762 (2009).

  42. 42.

    Padilla, C. C. et al. Standard filtration practices may significantly distort planktonic microbial diversity estimates. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.00547 (2015).

  43. 43.

    Padilla, C. C. et al. NC10 bacteria in marine oxygen minimum zones. ISME J. 10, 2067–2071 (2016).

  44. 44.

    Frias-Lopez, J. et al. Microbial community gene expression in ocean surface waters. Proc. Natl Acad. Sci. USA 105, 3805–3810 (2008).

  45. 45.

    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2011).

  46. 46.

    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).

  47. 47.

    Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

  48. 48.

    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

  49. 49.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

  50. 50.

    DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).

  51. 51.

    Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

  52. 52.

    Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).

  53. 53.

    Berger, S. A., Krompass, D. & Stamatakis, A. Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum likelihood. Syst. Biol. 60, 291–302 (2011).

  54. 54.

    Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. MetaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).

  55. 55.

    Wu, Y. W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2015).

  56. 56.

    Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).

  57. 57.

    Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. DRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).

  58. 58.

    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 - Approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

  59. 59.

    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

  60. 60.

    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

  61. 61.

    Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).

  62. 62.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

  63. 63.

    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).

  64. 64.

    Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

  65. 65.

    Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–D285 (2016).

  66. 66.

    Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

  67. 67.

    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

  68. 68.

    Letunic, I. & Bork, P. Interactive tree of life (iTOL)v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).

  69. 69.

    Pernthaler, A., Pernthaler, J. & Amann, R. in Molecular Microbial Ecology Manual (eds Kowalchuk, G. et al.) 711–726 (Kluwer Academic, London, 2004).

  70. 70.

    Beam, J. P. Geobiological Interactions of Archaeal Populations in Acidic Geothermal Springs of Yellowstone National Park, WY, USA. PhD thesis, Montana State Univ. (2015).

  71. 71.

    Sauder, L. A. et al. Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system. ISME J. 11, 1142–1157 (2017).

  72. 72.

    Amann, R. I. et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 1919–1925 (1990).

  73. 73.

    Daims, H., Brühl, A., Amann, R., Schleifer, K.-H. & Wagner, M. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22, 434–444 (1999).

  74. 74.

    Wallner, G., Amann, R. & Beisker, W. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14, 136–143 (1993).

  75. 75.

    Martínez-Pérez, C. et al. The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. Nat. Microbiol. 1, 16163 (2016).

  76. 76.

    Polerecky, L. et al. Look@NanoSIMS - a tool for the analysis of nanoSIMS data in environmental microbiology. Environ. Microbiol. 14, 1009–1023 (2012).

  77. 77.

    Svedén, J. B. et al. High cell-specific rates of nitrogen and carbon fixation by the cyanobacterium Aphanizomenon sp. at low temperatures in the Baltic Sea. FEMS Microbiol. Ecol. 91, 1–10 (2015).

  78. 78.

    Musat, N., Foster, R., Vagner, T., Adam, B. & Kuypers, M. M. M. Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol. Rev. 36, 486–511 (2012).

  79. 79.

    Woebken, D. et al. Revisiting N2 fixation in Guerrero Negro intertidal microbial mats with a functional single-cell approach. ISME J. 9, 485–496 (2015).

  80. 80.

    Berg, C., Listmann, L., Vandieken, V., Vogts, A. & Jürgens, K. Chemoautotrophic growth of ammonia-oxidizing Thaumarchaeota enriched from a pelagic redox gradient in the Baltic Sea. Front. Microbiol. https://doi.org/10.3389/fmicb.2014.00786 (2015).

  81. 81.

    Krupke, A. et al. The effect of nutrients on carbon and nitrogen fixation by the UCYN-A – haptophyte symbiosis. ISME J. 9, 1635–1647 (2015).

  82. 82.

    Könneke, M. et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543–546 (2005).

Download references

Acknowledgements

The authors thank the captain and crew of the R/V Pelican PE17-02 cruise. The authors are grateful to G. Klockgether, D. Tienken, I. Ulber, L. Seidl, W. Neweshy, N. Alrubeay, M. Philippi and D. J. Parris for technical support; G. Lavik, J. Milucka, W. Mohr, N. Lehnen and S. Ahmerkamp for fruitful discussions. This research was funded by the Max-Planck-Society, the European Research Council Advanced Grant project NITRICARE 294343 (to M.W.) and the National Science Foundation grants 1558916 and 1564559 (to F.J.S.)

Author information

Author notes

    • Laura A. Bristow

    Present address: Department of Biology and Nordic Center for Earth Evolution (NordCEE), University of Southern Denmark, Odense, Denmark

Affiliations

  1. Max Planck Institute for Marine Microbiology, Bremen, Germany

    • Katharina Kitzinger
    • , Hannah K. Marchant
    • , Philipp F. Hach
    • , Abiel T. Kidane
    • , Sten Littmann
    • , Marcel M. M. Kuypers
    •  & Laura A. Bristow
  2. Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria

    • Katharina Kitzinger
    • , Craig W. Herbold
    • , Maria Mooshammer
    • , Andreas Richter
    •  & Michael Wagner
  3. School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA

    • Cory C. Padilla
    •  & Frank J. Stewart
  4. Marine Archaea Group, MARUM – Center for Marine Environmental Sciences & Department of Geosciences, University of Bremen, Bremen, Germany

    • Martin Könneke
    •  & Sandra Petrov
  5. Research Group for Marine Geochemistry (ICBM-MPI Bridging Group), Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University Oldenburg, Oldenburg, Germany

    • Jutta Niggemann

Authors

  1. Search for Katharina Kitzinger in:

  2. Search for Cory C. Padilla in:

  3. Search for Hannah K. Marchant in:

  4. Search for Philipp F. Hach in:

  5. Search for Craig W. Herbold in:

  6. Search for Abiel T. Kidane in:

  7. Search for Martin Könneke in:

  8. Search for Sten Littmann in:

  9. Search for Maria Mooshammer in:

  10. Search for Jutta Niggemann in:

  11. Search for Sandra Petrov in:

  12. Search for Andreas Richter in:

  13. Search for Frank J. Stewart in:

  14. Search for Michael Wagner in:

  15. Search for Marcel M. M. Kuypers in:

  16. Search for Laura A. Bristow in:

Contributions

L.A.B., K.K., H.K.M., M.M.M.K. and M.W. designed the study. K.K., L.A.B. and H.K.M. performed experiments, S.L. and A.T.K. ran nanoSIMS analyses. K.K., L.A.B., H.K.M. and P.F.H. analysed samples and data. C.C.P. sampled for and performed molecular analyses with contribution from C.W.H. and F.J.S. Cyanate concentrations were measured by M.M. and A.R.; total dissolved nitrogen was analysed by J.N. Cultures were provided by S.P. and M.K. The manuscript was written by K.K., L.A.B. and H.K.M., with contributions from all co-authors.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Hannah K. Marchant.

Supplementary information

  1. Supplementary Information

    Supplementary Information

  2. Reporting Summary

  3. Supplementary Table 1

    Statistics for rate calculations at all stations and depths (one-tailed t-test).

  4. Supplementary Table 9

    Accession numbers of sequences used for 16S rRNA gene tree, amoA, CynS, UreC and genome trees.

  5. Supplementary Table 10

    CTD data, measured nutrient concentrations, process rates, relative abundance of Thaumarchaeota based on 16S rRNA gene amplicon sequencing and Thaumarchaeota-specific CARD-FISH counts.

  6. Supplementary File 1

    UreC tree with bootstrap values (PDF).

  7. Supplementary File 2

    UreC tree with bootstrap values (tree).

  8. Supplementary File 3

    UreC tree with node labels (PDF).

  9. Supplementary File 4

    UreC tree with node labels (tree).

  10. Supplementary File 5

    UreC tree annotation.

  11. Supplementary File 6

    Read-fragment-mapping UreC.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41564-018-0316-2