Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Viruses control dominant bacteria colonizing the terrestrial deep biosphere after hydraulic fracturing


The deep terrestrial biosphere harbours a substantial fraction of Earth’s biomass and remains understudied compared with other ecosystems. Deep biosphere life primarily consists of bacteria and archaea, yet knowledge of their co-occurring viruses is poor. Here, we temporally catalogued viral diversity from five deep terrestrial subsurface locations (hydraulically fractured wells), examined virus–host interaction dynamics and experimentally assessed metabolites from cell lysis to better understand viral roles in this ecosystem. We uncovered high viral diversity, rivalling that of peatland soil ecosystems, despite low host diversity. Many viral operational taxonomic units were predicted to infect Halanaerobium, the dominant microorganism in these ecosystems. Examination of clustered regularly interspaced short palindromic repeats–CRISPR-associated proteins (CRISPR–Cas) spacers elucidated lineage-specific virus–host dynamics suggesting active in situ viral predation of Halanaerobium. These dynamics indicate repeated viral encounters and changing viral host range across temporally and geographically distinct shale formations. Laboratory experiments showed that prophage-induced Halanaerobium lysis releases intracellular metabolites that can sustain key fermentative metabolisms, supporting the persistence of microorganisms in this ecosystem. Together, these findings suggest that diverse and active viral populations play critical roles in driving strain-level microbial community development and resource turnover within this deep terrestrial subsurface ecosystem.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Overview of viruses detected in hydraulically fractured shale wells.
Fig. 2: Viral and Halanaerobium dynamics in hydraulically fractured wells.
Fig. 3: Alluvial plots showing dynamics of Halanaerobium genomes (isolates and MAGs) and viruses within the Utica-2 well.
Fig. 4: Network of genomic links between viral genera and Halanaerobium hosts.
Fig. 5: Halanaerobium strain WG8 prophage induction.

Data availability

Halanaerobium isolate genome and MAGs are publicly available in the JGI Genome Portal database ( or in NCBI; see Supplementary Table 1 for accession numbers. All of the metagenomic nucleotide files used in this study are publicly available through JGI or NCBI; accession numbers are listed in Supplementary Data 1.


  1. 1.

    Suttle, C. A. Viruses in the sea. Nature 437, 356–361 (2005).

    CAS  Article  Google Scholar 

  2. 2.

    Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998).

    CAS  Article  Google Scholar 

  3. 3.

    De Smet, J. et al. High coverage metabolomics analysis reveals phage-specific alterations to Pseudomonas aeruginosa physiology during infection. ISME J. 10, 1823–1835 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Wommack, K. E. & Colwell, R. R. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64, 69–114 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    De Smet, J., Hendrix, H., Blasdel, B. G., Danis-Wlodarczyk, K. & Lavigne, R. Pseudomonas predators: understanding and exploiting phage–host interactions. Nat. Rev. Microbiol. 15, 517–530 (2017).

    Article  Google Scholar 

  6. 6.

    Feiner, R. et al. A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat. Rev. Microbiol. 13, 641–650 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    Brum, J. R. et al. Patterns and ecological drivers of ocean viral communities. Science 348, 1261498–1261498 (2015).

    Article  Google Scholar 

  8. 8.

    Danovaro, R. et al. Major viral impact on the functioning of benthic deep-sea ecosystems. Nature 454, 1084–1087 (2008).

    CAS  Article  Google Scholar 

  9. 9.

    Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).

    CAS  Article  Google Scholar 

  10. 10.

    Nigro, O. D. et al. Viruses in the oceanic basement. mBio 8, e02129-16 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Pan, D. et al. Correlation between viral production and carbon mineralization under nitrate-reducing conditions in aquifer sediment. ISME J. 8, 1691–1703 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Reyes, A. et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466, 334–338 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Anderson, R. E., Brazelton, W. J. & Baross, J. A. Is the genetic landscape of the deep subsurface biosphere affected by viruses? Front. Microbiol. 2, 219 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Daly, R. A. et al. Microbial metabolisms in a 2.5-km-deep ecosystem created by hydraulic fracturing in shales. Nat. Microbiol. 1, 16146 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Booker, A. E. et al. Sulfide generation by dominant Halanaerobium microorganisms in hydraulically fractured shales. mSphere 2, e00257-17 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Liang, R. et al. Metabolic capability of a predominant Halanaerobium sp. in hydraulically fractured gas wells and its implication in pipeline corrosion. Front. Microbiol. 7, 116 (2016).

    Google Scholar 

  17. 17.

    Lipus, D. et al. Predominance and metabolic potential of Halanaerobium in produced water from hydraulically fractured Marcellus shale wells. Appl. Environ. Microbiol. 83, 181 (2017).

    Article  Google Scholar 

  18. 18.

    Mouser, P. J., Borton, M., Darrah, T. H., Hartsock, A. & Wrighton, K. C. Hydraulic fracturing offers view of microbial life in the deep terrestrial subsurface. FEMS Microbiol. Ecol. 92, fiw166 (2016).

    Article  Google Scholar 

  19. 19.

    Bhupathiraju, V. K., McInerney, M. J., Woese, C. R. & Tanner, R. S. Haloanaerobium kushneri sp nov., an obligately halophilic, anaerobic bacterium from an oil brine. Int. J. Syst. Evol. Microbiol. 49, 953–960 (1999).

    CAS  Google Scholar 

  20. 20.

    Bhupathiraju, V. K. et al. Haloanaerobium salsugo Sp-Nov, a moderately halophilic, anaerobic bacterium from a subterranean brine. Int. J. Syst. Evol. Microbiol. 44, 565–572 (1994).

    CAS  Google Scholar 

  21. 21.

    Brown, S. D. et al. Complete genome sequence of the haloalkaliphilic, hydrogen-producing bacterium Halanaerobium hydrogeniformans. J. Bacteriol. 193, 3682–3683 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Kivisto, A. et al. Genome sequence of Halanaerobium saccharolyticum subsp. saccharolyticum strain DSM 6643T, a halophilic hydrogen-producing bacterium. Genome Announc. 1, e00187-13 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Zeikus, J. G., Hegge, P. W., Thompson, T. E., Phelps, T. J. & Langworthy, T. A. Isolation and description of Haloanaerobium praevalens gen. nov. and sp. nov., an obligately anaerobic halophile common to Great Salt Lake sediments. Curr. Microbiol. 9, 225–233 (1983).

    CAS  Article  Google Scholar 

  24. 24.

    Roux, S., Hallam, S. J., Woyke, T. & Sullivan, M. B. Viral dark matter and virus–host interactions resolved from publicly available microbial genomes. eLife 4, e08490 (2015).

    Article  Google Scholar 

  25. 25.

    Gregory, A. C. et al. Genomic differentiation among wild cyanophages despite widespread horizontal gene transfer. BMC Genomics 17, 930 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Leff, J. W. et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl Acad. Sci. USA 112, 10967–10972 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Bolduc, B. et al. vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect Archaea and Bacteria. PeerJ 5, e3243 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Paez-Espino, D. et al. Uncovering Earth’s virome. Nature 536, 425–430 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Lefkowitz, E. J. et al. Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res. 46, D708–D717 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    Cluff, M. A., Hartsock, A., MacRae, J. D., Carter, K. & Mouser, P. J. Temporal changes in microbial ecology and geochemistry in produced water from hydraulically fractured Marcellus shale gas wells. Environ. Sci. Technol. 48, 6508–6517 (2014).

    CAS  Article  Google Scholar 

  32. 32.

    Davis, J. P., Struchtemeyer, C. G. & Elshahed, M. S. Bacterial communities associated with production facilities of two newly drilled thermogenic natural gas wells in the Barnett Shale (Texas, USA). Microb. Ecol. 64, 942–954 (2012).

    CAS  Article  Google Scholar 

  33. 33.

    Murali Mohan, A. et al. Microbial community changes in hydraulic fracturing fluids and produced water from shale gas extraction. Environ. Sci. Technol. 47, 13141–13150 (2013).

    CAS  Article  Google Scholar 

  34. 34.

    Wuchter, C., Banning, E. & Mincer, T. J. Microbial diversity and methanogenic activity of Antrim Shale formation waters from recently fractured wells. Front. Microbiol. 4, 367 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Ahlgren, N. A., Ren, J., Lu, Y. Y., Fuhrman, J. A. & Sun, F. Alignment-free d 2 * oligonucleotide frequency dissimilarity measure improves prediction of hosts from metagenomically-derived viral sequences. Nucleic Acids Res. 45, 39–53 (2017).

    CAS  Article  Google Scholar 

  36. 36.

    Wang, K., Wommack, K. E. & Chen, F. Abundance and distribution of Synechococcus spp. and cyanophages in the Chesapeake Bay. Appl. Environ. Microbiol. 77, 7459–7468 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Sharon, I. et al. Time series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage during infant gut colonization. Genome Res. 23, 111–120 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Waterbury, J. B. & Valois, F. W. Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophages abundant in seawater. Appl. Environ. Microbiol. 59, 3393–3399 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Stern, A. & Sorek, R. The phage-host arms race: shaping the evolution of microbes. Bioessays 33, 43–51 (2010).

    Article  Google Scholar 

  40. 40.

    Howard-Varona, C. et al. Multiple mechanisms drive phage infection efficiency in nearly identical hosts. ISME J. 12, 1605–1618 (2018).

    Article  Google Scholar 

  41. 41.

    Sun, C. L., Thomas, B. C., Barrangou, R. & Banfield, J. F. Metagenomic reconstructions of bacterial CRISPR loci constrain population histories. ISME J. 10, 858–870 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Emerson, J. B. et al. Virus–host and CRISPR dynamics in archaea-dominated hypersaline Lake Tyrrell, Victoria, Australia. Archaea 2013, 1–12 (2013).

    Article  Google Scholar 

  43. 43.

    Achigar, R., Magadán, A. H., Tremblay, D. M., Pianzzola, M. J. & Moineau, S. Phage–host interactions in Streptococcus thermophilus: genome analysis of phages isolated in Uruguay and ectopic spacer acquisition in CRISPR array. Sci. Rep. 7, 43438 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Gómez, P. & Buckling, A. Bacteria–phage antagonistic coevolution in soil. Science 332, 106–109 (2011).

    Article  Google Scholar 

  45. 45.

    Levin, B. R. Nasty viruses, costly plasmids, population dynamics, and the conditions for establishing and maintaining CRISPR-mediated adaptive immunity in bacteria. PLoS Genet. 6, e1001171 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Brum, J. R., Schenck, R. O. & Sullivan, M. B. Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses. ISME J. 7, 1738–1751 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Kauffman, K. M. et al. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature 554, 118–112 (2018).

    CAS  Article  Google Scholar 

  48. 48.

    Bondy-Denomy, J. et al. Prophages mediate defense against phage infection through diverse mechanisms. ISME J. 10, 2854–2866 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Borton, M. A. et al. Coupled laboratory and field investigations resolve microbial interactions that underpin persistence in hydraulically fractured shales. Proc. Natl Acad. Sci. USA 104, 201800155 (2018).

    Google Scholar 

  50. 50.

    Weitz, J. S. et al. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes. ISME J. 9, 1352–1364 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    John, S. G. et al. A simple and efficient method for concentration of ocean viruses by chemical flocculation. Environ. Microbiol. Rep. 3, 195–202 (2010).

    Article  Google Scholar 

  52. 52.

    Lever, M. A. et al. A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types. Front. Microbiol. 6, 1281 (2015).

    Article  Google Scholar 

  53. 53.

    Joshi, N. A. & Fass, J. N. Sickle: A Sliding-Window, Adaptive, Quality-Based Trimming Tool for FastQ Files Version 1.33 (2011);

  54. 54.

    Wu, M. & Scott, A. J. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 28, 1033–1034 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Miller, C. S., Baker, B. J., Thomas, B. C., Singer, S. W. & Banfield, J. F. EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data. Genome Biol. 12, R44 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Leplae, R., Hebrant, A., Wodak, S. J. & Toussaint, A. ACLAME: a CLAssification of Mobile genetic Elements. Nucleic Acids Res. 32, D45–D49 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Shannon, P. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Sullivan, M. J., Petty, N. K. & Beatson, S. A. Easyfig: a genome comparison visualizer. Bioinformatics 27, 1009–1010 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Makarova, K. S. et al. An updated evolutionary classification of CRISPR–Cas systems. Nat. Rev. Microbiol. 13, 722–736 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Weljie, A. M., Newton, J., Mercier, P., Carlson, E. & Slupsky, C. M. Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal. Chem. 78, 4430–4442 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Thurber, R. V., Haynes, M., Breitbart, M., Wegley, L. & Rohwer, F. Laboratory procedures to generate viral metagenomes. Nat. Protoc. 4, 470–483 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Williamson, S. J., Houchin, L. A., McDaniel, L. & Paul, J. H. Seasonal variation in lysogeny as depicted by prophage induction in Tampa Bay, Florida. Appl. Environ. Microbiol. 68, 4307–4314 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references


R.A.D., M.A.B, D.M.M, A.E.B, A.J.H, P.J.M., K.C.W. and M.J.W. are partially supported by funding from the National Sciences Foundation Dimensions of Biodiversity (award no. 1342701). R.A.D., M.A.B., D.M.M., A.E.B., K.C.W. and M.J.W. also received support from Dow Microbial Control for this work. Samples from wells M-4 and M-5 were provided by the Marcellus Shale Energy and Environment Laboratory funded by the Department of Energy’s National Energy Technology Laboratory, grant no. DE-FE0024297. Metagenomic sequencing for this research was performed by the Department of Energy’s Joint Genome Institute (JGI) via a large-scale sequencing award to K.C.W (award no. 1931). Metabolite support was provided by Environmental Molecular Sciences Laboratory (EMSL) support via a JGI–EMSL Collaborative Science Initiative awarded to K.C.W (award no. 48483) and an EMSL instrument time award to M.J.W. (award no. 49615). Both JGI and EMSL facilities are sponsored by the Office of Biological and Environmental Research and operated under contract nos. DE-AC02-05CH11231 (JGI) and DE-AC05-76RL01830 (EMSL). M.B.S. was partially supported by a Gordon and Betty Moore Foundation grant (no. 3790).

Author information




R.A.D., K.C.W. and M.J.W. designed the study. A.J.H. and P.J.M. collected the samples. R.A.D., R.A.W. and M.A.B. performed bioinformatic analyses. D.M.M., A.E.B. and M.D.J. conducted laboratory induction analyses, while D.W.H. performed quantitative metabolite NMR measurements. T.M. conducted electron microscopy on Halanaerobium cultures. J.D.M. and K.W. participated in constructive manuscript discussions that resulted in an improved manuscript. M.J.W., K.C.W., M.B.S., S.R. and R.A.D. integrated the data and drafted the manuscript. All authors reviewed the results and approved the manuscript.

Corresponding author

Correspondence to Michael J. Wilkins.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–4, Supplementary Figures 1–5.

Reporting Summary

Supplementary Data 1

Sequencing information for metagenomes.

Supplementary Data 2

Viral OTU table.

Supplementary Data 3

Halanaerobium relative abundance in the Utica-2 well.

Supplementary Data 4

Prophage induction metabolites.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Daly, R.A., Roux, S., Borton, M.A. et al. Viruses control dominant bacteria colonizing the terrestrial deep biosphere after hydraulic fracturing. Nat Microbiol 4, 352–361 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing