Article | Published:

Pervasive acquisition of CRISPR memory driven by inter-species mating of archaea can limit gene transfer and influence speciation

Nature Microbiologyvolume 4pages177186 (2019) | Download Citation

Abstract

CRISPR–Cas systems provide prokaryotes with sequence-specific immunity against viruses and plasmids based on DNA acquired from these invaders, known as spacers. Surprisingly, many archaea possess spacers that match chromosomal genes of related species, including those encoding core housekeeping genes. By sequencing genomes of environmental archaea isolated from a single site, we demonstrate that inter-species spacers are common. We show experimentally, by mating Haloferax volcanii and Haloferax mediterranei, that spacers are indeed acquired chromosome-wide, although a preference for integrated mobile elements and nearby regions of the chromosome exists. Inter-species mating induces increased spacer acquisition and may result in interactions between the acquisition machinery of the two species. Surprisingly, many of the spacers acquired following inter-species mating target self-replicons along with those originating from the mating partner, indicating that the acquisition machinery cannot distinguish self from non-self under these conditions. Engineering the chromosome of one species to be targeted by the other’s CRISPR–Cas reduces gene exchange between them substantially. Thus, spacers acquired during inter-species mating could limit future gene transfer, resulting in a role for CRISPR–Cas systems in microbial speciation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).

  2. 2.

    Deveau, H. et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190, 1390–1400 (2008).

  3. 3.

    Marraffini, L. A. & Sontheimer, E. J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, 1843–1845 (2008).

  4. 4.

    Shah, S. A., Hansen, N. R. & Garrett, R. A. Distribution of CRISPR spacer matches in viruses and plasmids of crenarchaeal acidothermophiles and implications for their inhibitory mechanism. Biochem. Soc. Trans. 37, 23–28 (2009).

  5. 5.

    Held, N. L., Herrera, A., Quiroz, H. C. & Whitaker, R. J. CRISPR associated diversity within a population of Sulfolobus islandicus. PLoS ONE 5, e12988 (2010).

  6. 6.

    Shmakov, S. A. et al. The CRISPR spacer space is dominated by sequences from species-specific mobilomes. mBio 8, e01397–17 (2017).

  7. 7.

    Brodt, A., Lurie-Weinberger, M. N. & Gophna, U. CRISPR loci reveal networks of gene exchange in archaea. Biol. Direct 6, 65 (2011).

  8. 8.

    Rosenshine, I., Tchelet, R. & Mevarech, M. The mechanism of DNA transfer in the mating system of an archaebacterium. Science 245, 1387–1389 (1989).

  9. 9.

    Naor, A., Lapierre, P., Mevarech, M., Papke, R. T. & Gophna, U. Low species barriers in halophilic archaea and the formation of recombinant hybrids. Curr. Biol. 22, 1444–1448 (2012).

  10. 10.

    Schleper, C., Holz, I., Janekovic, D., Murphy, J. & Zillig, W. A multicopy plasmid of the extremely thermophilic archaeon Sulfolobus effects its transfer to recipients by mating. J. Bacteriol. 177, 4417–4426 (1995).

  11. 11.

    Kuwabara, T. et al. Thermococcus coalescens sp. nov., a cell-fusing hyperthermophilic archaeon from Suiyo Seamount. Int. J. Syst. Evol. Microbiol. 55, 2507–2514 (2005).

  12. 12.

    Burstein, D. et al. New CRISPR–Cas systems from uncultivated microbes. Nature 542, 237–241 (2016).

  13. 13.

    Haft, D. H., Selengut, J., Mongodin, E. F., Nelson, K. E. & White, O. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/cas subtypes exist in prokaryotic genomes. PLoS Comput. Biol. 1, e60 (2005).

  14. 14.

    Pourcel, C., Salvignol, G. & Vergnaud, G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151, 653–663 (2005).

  15. 15.

    Bolotin, A., Quinquis, B., Sorokin, A. & Ehrlich, S. D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151, 2551–2561 (2005).

  16. 16.

    Mojica, F. J. M., Díez-Villaseñor, C., García-Martínez, J. & Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60, 174–182 (2005).

  17. 17.

    Stern, A., Keren, L., Wurtzel, O., Amitai, G. & Sorek, R. Self-targeting by CRISPR: gene regulation or autoimmunity? Trends Genet. 26, 335–340 (2010).

  18. 18.

    Yosef, I., Goren, M. G., Kiro, R., Edgar, R. & Qimron, U. High-temperature protein G is essential for activity of the Escherichia coli clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system. Proc. Natl Acad. Sci. USA 108, 20136–20141 (2011).

  19. 19.

    Vercoe, R. B. et al. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet. 9, e1003454 (2013).

  20. 20.

    Selle, K., Klaenhammer, T. R. & Barrangou, R. CRISPR-based screening of genomic island excision events in bacteria. Proc. Natl Acad. Sci. USA 112, 8076–8081 (2015).

  21. 21.

    Li, Y. et al. Harnessing type I and type III CRISPR-Cas systems for genome editing. Nucleic Acids Res. 44, e34 (2016).

  22. 22.

    Fischer, S. et al. An archaeal immune system can detect multiple protospacer adjacent motifs (PAMs) to target invader DNA. J. Biol. Chem. 287, 33351–33365 (2012).

  23. 23.

    Li, M., Wang, R. & Xiang, H. Haloarcula hispanica CRISPR authenticates PAM of a target sequence to prime discriminative adaptation. Nucleic Acids Res. 42, 7226–7235 (2014).

  24. 24.

    Mojica, F. J. M., Juez, G. & Rodriguez-Valera, F. Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol. Microbiol. 9, 613–621 (1993).

  25. 25.

    Brendel, J. et al. A complex of cas proteins 5, 6, and 7 is required for the biogenesis and stability of clustered regularly interspaced short palindromic repeats (CRISPR)-derived RNAs (crRNAs) in Haloferax volcanii. J. Biol. Chem. 289, 7164–7177 (2014).

  26. 26.

    Li, M. et al. Characterization of CRISPR RNA biogenesis and Cas6 cleavage-mediated inhibition of a provirus in the haloarchaeon Haloferax mediterranei. J. Bacteriol. 195, 867–875 (2013).

  27. 27.

    Artieri, C. G. et al. Cis-regulatory evolution in prokaryotes revealed by interspecific archaeal hybrids. Sci. Rep. 7, 3986 (2017).

  28. 28.

    Yosef, I., Goren, M. G. & Qimron, U. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res. 40, 5569–5576 (2012).

  29. 29.

    Yang, H. et al. Activation of a dormant replication origin is essential for Haloferax mediterranei lacking the primary origins. Nat. Commun. 6, 8321 (2015).

  30. 30.

    Levy, A. et al. CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature 520, 505–510 (2015).

  31. 31.

    Staals, R. H. J. et al. Interference-driven spacer acquisition is dominant over naive and primed adaptation in a native CRISPR–cas system. Nat. Commun. 7, 12853 (2016).

  32. 32.

    Shiimori, M. et al. Role of free DNA ends and protospacer adjacent motifs for CRISPR DNA uptake in Pyrococcus furiosus. Nucleic Acids Res 45, 11281–11294 (2017).

  33. 33.

    Chimileski, S., Dolas, K., Naor, A., Gophna, U. & Papke, R. T. Extracellular DNA metabolism in Haloferax volcanii. Front. Microbiol. 5, 57 (2014).

  34. 34.

    Erdmann, S., Le Moine Bauer, S. & Garrett, R. A. Inter-viral conflicts that exploit host CRISPR immune systems of Sulfolobus. Mol. Microbiol. 91, 900–917 (2014).

  35. 35.

    Maier, L.-K. et al. Essential requirements for the detection and degradation of invaders by the Haloferax volcanii CRISPR/Cas system I-B. RNA Biol. 10, 865–874 (2013).

  36. 36.

    Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).

  37. 37.

    Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

  38. 38.

    Modell, J. W., Jiang, W. & Marraffini, L. A. CRISPR–Cas systems exploit viral DNA injection to establish and maintain adaptive immunity. Nature 544, 101–104 (2017).

  39. 39.

    Lopez-Sanchez, M.-J. et al. The highly dynamic CRISPR1 system of Streptococcus agalactiae controls the diversity of its mobilome. Mol. Microbiol. 85, 1057–1071 (2012).

  40. 40.

    Grissa, I., Vergnaud, G. & Pourcel, C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 8, 172 (2007).

  41. 41.

    Chimileski, S., Franklin, M. J. & Papke, R. Biofilms formed by the archaeon Haloferax volcanii exhibit cellular differentiation and social motility, and facilitate horizontal gene transfer. BMC Biol. 12, 65 (2014).

  42. 42.

    Naor, A. et al. Impact of a homing intein on recombination frequency and organismal fitness. Proc. Natl Acad. Sci. USA 113, 4654–4661 (2016).

  43. 43.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. journal 17, 10 (2011).

  44. 44.

    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

  45. 45.

    Bland, C. et al. CRISPR Recognition Tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics 8, 209 (2007).

  46. 46.

    Allers, T., Barak, S., Liddell, S., Wardell, K. & Mevarech, M. Improved strains and plasmid vectors for conditional overexpression of His-tagged proteins in Haloferax volcanii. Appl. Environ. Microbiol. 76, 1759–1769 (2010).

  47. 47.

    Allers, T., Ngo, H. P., Mevarech, M. & Lloyd, R. G. Development of additional selectable markers for the halophilic archaeon Haloferax volcanii based on the leuB and trpA Genes. Appl. Environ. Microbiol. 70, 943–953 (2004).

  48. 48.

    Bitan-Banin, G., Ortenberg, R. & Mevarech, M. Development of a gene knockout system for the halophilic archaeon Haloferax volcanii by use of the pyrE Gene. J. Bacteriol. 185, 772–778 (2003).

  49. 49.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

  50. 50.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

  51. 51.

    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

  52. 52.

    Hall, T. BioEdit Sequence Alignment Editor for Windows 95/98/NT/XP/Vista/7 (Ibis Therapeutics, 2013); http://www.mbio.ncsu.edu/BioEdit/bioedit.html.

  53. 53.

    Leenay, R. T. et al. Identifying and visualizing functional PAM diversity across CRISPR–Cas systems. Mol. Cell 62, 137–147 (2016).

  54. 54.

    Hartman, A. L. et al. The complete genome sequence of Haloferax volcanii DS2, a model archaeon. PLoS ONE 5, e9605 (2010).

  55. 55.

    Han, J. et al. Complete genome sequence of the metabolically versatile halophilic archaeon Haloferax mediterranei, a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) producer. J. Bacteriol. 194, 4463–4464 (2012).

  56. 56.

    O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).

  57. 57.

    Zimmermann, L. et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430, 2237–2243 (2018).

  58. 58.

    Makarova, K. S. et al. Dark matter in archaeal genomes: a rich source of novel mobile elements, defense systems and secretory complexes. Extremophiles 18, 877–893 (2014).

Download references

Acknowledgements

The authors thank R. Sorek and A. Herskovits for their helpful comments and insights, and H. Xiang for providing sequence data and provirus annotations. The authors thank S. Green of the University of Illinois at Chicago for his continued expert help in challenging sequencing projects and E. Koonin (NIH) for helpful discussions. Funding was provided by Deutsche Forschungsgemeinschaft (MA1538/16-2), the Israel Science Foundation (535/15), the Binational Science Foundation (2013061) with partial support by the Constantiner Institute, European Research Council (grant ERC-AdG 787514).

Author information

Author notes

    • Adit Naor

    Present address: Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA

Affiliations

  1. Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel

    • Israela Turgeman-Grott
    • , Shirley Joseph
    • , Sam Marton
    • , Kim Eizenshtein
    • , Adit Naor
    • , Yarden Shalev
    • , Mor Zarkor
    • , Leah Reshef
    • , Neta Altman-Price
    •  & Uri Gophna
  2. Department of Biological Sciences, Dartmouth College, Hanover, NH, USA

    • Shannon M. Soucy
  3. Department of Biology II, Ulm University, Ulm, Germany

    • Aris-Edda Stachler
    •  & Anita Marchfelder

Authors

  1. Search for Israela Turgeman-Grott in:

  2. Search for Shirley Joseph in:

  3. Search for Sam Marton in:

  4. Search for Kim Eizenshtein in:

  5. Search for Adit Naor in:

  6. Search for Shannon M. Soucy in:

  7. Search for Aris-Edda Stachler in:

  8. Search for Yarden Shalev in:

  9. Search for Mor Zarkor in:

  10. Search for Leah Reshef in:

  11. Search for Neta Altman-Price in:

  12. Search for Anita Marchfelder in:

  13. Search for Uri Gophna in:

Contributions

U.G. and I.T.-G. conceived the study. U.G., I.T.-G. and A.M. designed the experiments. S.S. assembled and annotated genome sequences. I.T.-G., A.N. and N.A.-P. designed and constructed strains. I.T.-G., S.J., K.E., Y.S., A.-E.S. and M.Z. performed experiments. L.R., S.M., I.T.G. and U.G. analysed data. U.G. and I.T.-G. wrote the manuscript. L.R., S.S. and A.M. commented and made critical revisions to the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Uri Gophna.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–10, Supplementary Tables 1–12, Supplementary References.

  2. Reporting Summary

  3. Supplementary Table 13

    Complete spacer acquisition data from H. volcanii arrays obtained following three independent inter-species mating experiments.

  4. Supplementary Table 14

    Complete spacer acquisition data from H. mediterranei arrays obtained following three independent inter-species mating experiments.

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41564-018-0302-8