Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Antiviral activity of bone morphogenetic proteins and activins


Understanding the control of viral infections is of broad importance. Chronic hepatitis C virus (HCV) infection causes decreased expression of the iron hormone hepcidin, which is regulated by hepatic bone morphogenetic protein (BMP)/SMAD signalling. We found that HCV infection and the BMP/SMAD pathway are mutually antagonistic. HCV blunted induction of hepcidin expression by BMP6, probably via tumour necrosis factor (TNF)-mediated downregulation of the BMP co-receptor haemojuvelin. In HCV-infected patients, disruption of the BMP6/hepcidin axis and genetic variation associated with the BMP/SMAD pathway predicted the outcome of infection, suggesting that BMP/SMAD activity influences antiviral immunity. Correspondingly, BMP6 regulated a gene repertoire reminiscent of type I interferon (IFN) signalling, including upregulating interferon regulatory factors (IRFs) and downregulating an inhibitor of IFN signalling, USP18. Moreover, in BMP-stimulated cells, SMAD1 occupied loci across the genome, similar to those bound by IRF1 in IFN-stimulated cells. Functionally, BMP6 enhanced the transcriptional and antiviral response to IFN, but BMP6 and related activin proteins also potently blocked HCV replication independently of IFN. Furthermore, BMP6 and activin A suppressed growth of HBV in cell culture, and activin A inhibited Zika virus replication alone and in combination with IFN. The data establish an unappreciated important role for BMPs and activins in cellular antiviral immunity, which acts independently of, and modulates, IFN.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: HCV–BMP pathway interactions decrease hepcidin and associate with therapeutic outcome.
Fig. 2: Enrichment of SMAD1-bound loci proximal to IRF1-bound loci.
Fig. 3: BMP6 increases expression of IRF1 and IRF7 and decreases expression of USP18.
Fig. 4: BMP6 enhances IFN activity.
Fig. 5: BMPs and activins are antiviral against HCV.
Fig. 6: Effects of BMP6 and activin A against HBV and ZIKV.

Data availability

The data that support the findings of this study are available from the corresponding author upon request. The microarray of gene expression profile of HuH7.5 cells treated with 18 nM BMP6 for 24 h is available at the Gene Expression Omnibus under accession no. GSE121073.


  1. 1.

    Ganz, T. Systemic iron homeostasis. Physiol. Rev. 93, 1721–1741 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    Drakesmith, H. & Prentice, A. M. Hepcidin and the iron-infection axis. Science 338, 768–772 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    Fujita, N. et al. Hepcidin expression in the liver: relatively low level in patients with chronic hepatitis C. Mol. Med. 13, 97–104 (2007).

    CAS  Article  Google Scholar 

  4. 4.

    Girelli, D. et al. Reduced serum hepcidin levels in patients with chronic hepatitis C. J. Hepatol. 51, 845–852 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    Muckenthaler, M. U., Rivella, S., Hentze, M. W. & Galy, B. A red carpet for iron metabolism. Cell 168, 344–361 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    Babitt, J. L. et al. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat. Genet. 38, 531–539 (2006).

    CAS  Article  Google Scholar 

  7. 7.

    Ryan, J. D., Ryan, E., Fabre, A., Lawless, M. W. & Crowe, J. Defective bone morphogenic protein signaling underlies hepcidin deficiency in HFE hereditary hemochromatosis. Hepatology 52, 1266–1273 (2010).

    Article  Google Scholar 

  8. 8.

    Caldwell, R. L., Gadipatti, R., Lane, K. B. & Shepherd, V. L. HIV-1 TAT represses transcription of the bone morphogenic protein receptor-2 in U937 monocytic cells. J. Leukoc. Biol. 79, 192–201 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    Durrington, H. J. et al. Identification of a lysosomal pathway regulating degradation of the bone morphogenetic protein receptor type II. J. Biol. Chem. 285, 37641–37649 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    Olsavszky, V. et al. GATA4 and LMO3 balance angiocrine signaling and autocrine inflammatory activation by BMP2 in liver sinusoidal endothelial cells. Gene 627, 491–499 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Woodhouse, S. D. et al. Transcriptome sequencing, microarray, and proteomic analyses reveal cellular and metabolic impact of hepatitis C virus infection in vitro. Hepatology 52, 443–453 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    Wu, Q., Sun, C. C., Lin, H. Y. & Babitt, J. L. Repulsive guidance molecule (RGM) family proteins exhibit differential binding kinetics for bone morphogenetic proteins (BMPs). PLoS ONE 7, e46307 (2012).

    CAS  Article  Google Scholar 

  13. 13.

    Stacey, A. R. et al. Induction of a striking systemic cytokine cascade prior to peak viremia in acute human immunodeficiency virus type 1 infection, in contrast to more modest and delayed responses in acute hepatitis B and C virus infections. J. Virol. 83, 3719–3733 (2009).

    CAS  Article  Google Scholar 

  14. 14.

    Ge, D. et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461, 399–401 (2009).

    CAS  Article  Google Scholar 

  15. 15.

    Alliston, T. et al. Repression of bone morphogenetic protein and activin-inducible transcription by Evi-1. J. Biol. Chem. 280, 24227–24237 (2005).

    CAS  Article  Google Scholar 

  16. 16.

    Kawamura, I. et al. SnoN suppresses maturation of chondrocytes by mediating signal cross-talk between transforming growth factor-beta and bone morphogenetic protein pathways. J. Biol. Chem. 287, 29101–29113 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    Steinbicker, A. U. et al. Perturbation of hepcidin expression by BMP type I receptor deletion induces iron overload in mice. Blood 118, 4224–4230 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    Gutterman, J. U. Cytokine therapeutics: lessons from interferon alpha. Proc. Natl Acad. Sci. USA 91, 1198–1205 (1994).

    CAS  Article  Google Scholar 

  19. 19.

    Denard, B. et al. The membrane-bound transcription factor CREB3L1 is activated in response to virus infection to inhibit proliferation of virus-infected cells. Cell Host Microbe 10, 65–74 (2011).

    CAS  Article  Google Scholar 

  20. 20.

    Ikeda, M. et al. Efficient replication of a full-length hepatitis C virus genome, strain O, in cell culture, and development of a luciferase reporter system. Biochem. Biophys. Res. Commun. 329, 1350–1359 (2005).

    CAS  Article  Google Scholar 

  21. 21.

    Schoggins, J. W. et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472, 481–485 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    Trompouki, E. et al. Lineage regulators direct BMP and Wnt pathways to cell-specific programs during differentiation and regeneration. Cell 147, 577–589 (2011).

    CAS  Article  Google Scholar 

  23. 23.

    Rosenbloom, K. R. et al. ENCODE data in the UCSC Genome Browser: year 5 update. Nucleic Acids Res. 41, D56–D63 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    Cuny, G. D. et al. Structure–activity relationship study of bone morphogenetic protein (BMP) signaling inhibitors. Bioorg. Med. Chem. Lett. 18, 4388–4392 (2008).

    CAS  Article  Google Scholar 

  25. 25.

    Malakhova, O. A. et al. UBP43 is a novel regulator of interferon signaling independent of its ISG15 isopeptidase activity. EMBO J. 25, 2358–2367 (2006).

    CAS  Article  Google Scholar 

  26. 26.

    Zhang, X. et al. Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation. Nature 517, 89–93 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    Lin, Q. et al. Enantioselective synthesis of Janus kinase inhibitor INCB018424 via an organocatalytic aza-Michael reaction. Org. Lett. 11, 1999–2002 (2009).

    CAS  Article  Google Scholar 

  28. 28.

    Francois-Newton, V., Livingstone, M., Payelle-Brogard, B., Uze, G. & Pellegrini, S. USP18 establishes the transcriptional and anti-proliferative interferon α/β differential. Biochem. J. 446, 509–516 (2012).

    CAS  Article  Google Scholar 

  29. 29.

    Metz, P. et al. Identification of type I and type II interferon-induced effectors controlling hepatitis C virus replication. Hepatology 56, 2082–2093 (2012).

    CAS  Article  Google Scholar 

  30. 30.

    Cao, X. et al. MDA5 plays a critical role in interferon response during hepatitis C virus infection. J. Hepatol. 62, 771–778 (2015).

    CAS  Article  Google Scholar 

  31. 31.

    Clark, K., Plater, L., Peggie, M. & Cohen, P. Use of the pharmacological inhibitor BX795 to study the regulation and physiological roles of TBK1 and IκB kinase epsilon: a distinct upstream kinase mediates Ser-172 phosphorylation and activation. J. Biol. Chem. 284, 14136–14146 (2009).

    CAS  Article  Google Scholar 

  32. 32.

    Sakamoto, N. et al. Bone morphogenetic protein-7 and interferon-α synergistically suppress hepatitis C virus replicon. Biochem. Biophys. Res. Commun. 357, 467–473 (2007).

    CAS  Article  Google Scholar 

  33. 33.

    Besson-Fournier, C. et al. Induction of activin B by inflammatory stimuli up-regulates expression of the iron-regulatory peptide hepcidin through Smad1/5/8 signaling. Blood 120, 431–439 (2012).

    CAS  Article  Google Scholar 

  34. 34.

    Spottiswoode, N. et al. Role of activins in hepcidin regulation during malaria. Infect. Immun. 85, e00191–17 (2017).

    Article  Google Scholar 

  35. 35.

    Fletcher, S. P. et al. Identification of an intrahepatic transcriptional signature associated with self-limiting infection in the woodchuck model of hepatitis B. Hepatology 57, 13–22 (2013).

    CAS  Article  Google Scholar 

  36. 36.

    Kim, J. H., Luo, J. K. & Zhang, D. E. The level of hepatitis B virus replication is not affected by protein ISG15 modification but is reduced by inhibition of UBP43 (USP18) expression. J. Immunol. 181, 6467–6472 (2008).

    CAS  Article  Google Scholar 

  37. 37.

    Mao, R. et al. Inhibition of hepatitis B virus replication by the host zinc finger antiviral protein. PLoS Pathog. 9, e1003494 (2013).

    CAS  Article  Google Scholar 

  38. 38.

    Fillebeen, C. et al. Iron inactivates the RNA polymerase NS5B and suppresses subgenomic replication of hepatitis C virus. J. Biol. Chem. 280, 9049–9057 (2005).

    CAS  Article  Google Scholar 

  39. 39.

    Theurl, I. et al. Iron regulates hepatitis C virus translation via stimulation of expression of translation initiation factor 3. J. Infect. Dis. 190, 819–825 (2004).

    CAS  Article  Google Scholar 

  40. 40.

    Liu, H. et al. Iron regulator hepcidin exhibits antiviral activity against hepatitis C virus. PLoS ONE 7, e46631 (2012).

    CAS  Article  Google Scholar 

  41. 41.

    Tai, A. W. et al. A functional genomic screen identifies cellular cofactors of hepatitis C virus replication. Cell Host Microbe 5, 298–307 (2009).

    CAS  Article  Google Scholar 

  42. 42.

    MacParland, S. A. et al. Lipopolysaccharide and tumor necrosis factor alpha inhibit interferon signaling in hepatocytes by increasing ubiquitin-like protease 18 (USP18) expression. J. Virol. 90, 5549–5560 (2016).

    CAS  Article  Google Scholar 

  43. 43.

    Liu, S. Y., Sanchez, D. J., Aliyari, R., Lu, S. & Cheng, G. Systematic identification of type I and type II interferon-induced antiviral factors. Proc. Natl Acad. Sci. USA 109, 4239–4244 (2012).

    CAS  Article  Google Scholar 

  44. 44.

    Carlin, A. F. et al. An IRF-3-, IRF-5-, and IRF-7-independent pathway of dengue viral resistance utilizes IRF-1 to stimulate type I and II interferon responses. Cell Rep. 21, 1600–1612 (2017).

    CAS  Article  Google Scholar 

  45. 45.

    Chen, L. et al. Hepatic gene expression discriminates responders and nonresponders in treatment of chronic hepatitis C viral infection. Gastroenterology 128, 1437–1444 (2005).

    CAS  Article  Google Scholar 

  46. 46.

    Randall, G. et al. Silencing of USP18 potentiates the antiviral activity of interferon against hepatitis C virus infection. Gastroenterology 131, 1584–1591 (2006).

    CAS  Article  Google Scholar 

  47. 47.

    Eroshkin, A. & Mushegian, A. Conserved transactivation domain shared by interferon regulatory factors and Smad morphogens. J. Mol. Med. 77, 403–405 (1999).

    CAS  Article  Google Scholar 

  48. 48.

    Xu, P. et al. Innate antiviral host defense attenuates TGF-β function through IRF3-mediated suppression of Smad signaling. Mol. Cell 56, 723–737 (2014).

    CAS  Article  Google Scholar 

Download references


The authors thank MRC UK (grant no. 92044), the Wellcome Trust (WT091663MA and 109965MA), NIHR Biomedical Research Centre, Oxford, the Oxford Martin School, the NIH (NIAID U19AI082630, NIDDK R01DK087727, RO1DK-069533 and RO1DK-071837), the Beit Memorial Trust for Medical Research, CORE, The Rosetrees Trust, EU Fund to the University of Zagreb School of Medicine (grant no. KK01. and the GI Research Fund of Dublin, Ireland for funding. The authors also thank A. Townsend and L. Swift for useful discussions and technical guidance.

Author information




L.A.E., K.A.H., N.R., D.N.F., H.T.B., J.A., S.C., J.F., M.B., B.M.J.O. and A.E.A. designed and performed experiments. K.A.H., C.S., E.G. and C.W. performed bioinformatics analyses. J.D.R., S.B., P.F., M.T.G., D.M., J.C. and M.W.L. contributed clinical samples and related patient information. C.C.S., S.V., H.Y.L. and J.L.B. contributed critical reagents and expertise. L.A.E., K.A.H., H.Y.L., J.R., P.J.M., J.L.B., R.T.C., A.E.A., C.W. and P.K. provided intellectual input and contributed to the manuscript. H.D. organized the study and wrote the manuscript.

Corresponding author

Correspondence to Hal Drakesmith.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–6, Supplementary Figures 1–13.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eddowes, L.A., Al-Hourani, K., Ramamurthy, N. et al. Antiviral activity of bone morphogenetic proteins and activins. Nat Microbiol 4, 339–351 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing