Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Clostridium difficile toxins induce VEGF-A and vascular permeability to promote disease pathogenesis

Abstract

Clostridium difficile infection (CDI) is mediated by two major exotoxins, toxin A (TcdA) and toxin B (TcdB), that damage the colonic epithelial barrier and induce inflammatory responses. The function of the colonic vascular barrier during CDI has been relatively understudied. Here we report increased colonic vascular permeability in CDI mice and elevated vascular endothelial growth factor A (VEGF-A), which was induced in vivo by infection with TcdA- and/or TcdB-producing C. difficile strains but not with a TcdATcdB isogenic mutant. TcdA or TcdB also induced the expression of VEGF-A in human colonic mucosal biopsies. Hypoxia-inducible factor signalling appeared to mediate toxin-induced VEGF production in colonocytes, which can further stimulate human intestinal microvascular endothelial cells. Both neutralization of VEGF-A and inhibition of its signalling pathway attenuated CDI in vivo. Compared to healthy controls, CDI patients had significantly higher serum VEGF-A that subsequently decreased after treatment. Our findings indicate critical roles for toxin-induced VEGF-A and colonic vascular permeability in CDI pathogenesis and may also point to the pathophysiological significance of the gut vascular barrier in response to virulence factors of enteric pathogens. As an alternative to pathogen-targeted therapy, this study may enable new host-directed therapeutic approaches for severe, refractory CDI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CDI increases colonic vascular permeability in mice.
Fig. 2: C. difficile toxins induce VEGF-A production, mediated by the HIF-α, p38-MAPK and MEK1/2 signalling pathways, in human colonocytes.
Fig. 3: Toxins induce the production of VEGF-A in CDI mice in vivo and in human colonic mucosa ex vivo.
Fig. 4: Human colonocytes pre-exposed to TcdA or TcdB stimulate HIF signal-mediated HIMEC proliferation.
Fig. 5: Both VEGFR-2 kinase inhibition and anti-VEGF-A treatment attenuates vascular permeability and protects mice from CDI.
Fig. 6: Enhanced serum levels of VEGF-A in CDI patients and reduced VEGF-A levels in follow-up sera after standard treatment.

Similar content being viewed by others

Data availability

All data reported in this study are available from the corresponding author on reasonable request.

References

  1. Bartlett, J. G. Clostridium difficile: history of its role as an enteric pathogen and the current state of knowledge about the organism. Clin. Infect. Dis. 18, S265–S272 (1994).

    Article  PubMed  Google Scholar 

  2. Reineke, J. et al. Autocatalytic cleavage of Clostridium difficile toxin B. Nature 446, 415–419 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Torres, J., Jennische, E., Lange, S. & Lonnroth, I. Enterotoxins from Clostridium difficile; diarrhoeogenic potency and morphological effects in the rat intestine. Gut 31, 781–785 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mitchell, T. J. et al. Effect of toxin A and B of Clostridium difficile on rabbit ileum and colon. Gut 27, 78–85 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lyras, D. et al. Toxin B is essential for virulence of Clostridium difficile. Nature 458, 1176–1179 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Johal, S. S., Solomon, K., Dodson, S., Borriello, S. P. & Mahida, Y. R. Differential effects of varying concentrations of Clostridium difficile toxin A on epithelial barrier function and expression of cytokines. J. Infect. Dis. 189, 2110–2119 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Hecht, G., Koutsouris, A., Pothoulakis, C., LaMont, J. T. & Madara, J. L. Clostridium difficile toxin B disrupts the barrier function of T84 monolayers. Gastroenterology 102, 416–423 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Hecht, G., Pothoulakis, C., LaMont, J. T. & Madara, J. L. Clostridium difficile toxin A perturbs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers. J. Clin. Invest. 82, 1516–1524 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pousa, I. D., Mate, J. & Gisbert, J. P. Angiogenesis in inflammatory bowel disease. Eur. J. Clin. Invest. 38, 73–81 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. McLaren, W. J., Anikijenko, P., Thomas, S. G., Delaney, P. M. & King, R. G. In vivo detection of morphological and microvascular changes of the colon in association with colitis using fiberoptic confocal imaging (FOCI). Digest. Dis. Sci. 47, 2424–2433 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Danese, S. et al. Angiogenesis as a novel component of inflammatory bowel disease pathogenesis. Gastroenterology 130, 2060–2073 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Deban, L., Correale, C., Vetrano, S., Malesci, A. & Danese, S. Multiple pathogenic roles of microvasculature in inflammatory bowel disease: a Jack of all trades. Am. J. Pathol. 172, 1457–1466 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Danese, S. et al. Angiogenesis blockade as a new therapeutic approach to experimental colitis. Gut 56, 855–862 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Jerkic, M. et al. Dextran sulfate sodium leads to chronic colitis and pathological angiogenesis in Endoglin heterozygous mice. Inflamm. Bowel Dis. 16, 1859–1870 (2010).

    Article  PubMed  Google Scholar 

  15. Folkman, J. Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov. 6, 273–286 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Lin, C., McGough, R., Aswad, B., Block, J. A. & Terek, R. Hypoxia induces HIF-1α and VEGF expression in chondrosarcoma cells and chondrocytes. J. Orthop. Res. 22, 1175–1181 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Kroll, J. & Waltenberger, J. VEGF-A induces expression of eNOS and iNOS in endothelial cells via VEGF receptor-2 (KDR). Biochem. Biophys. Res. Commun. 252, 743–746 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Chidlow, J. H. et al. Differential angiogenic regulation of experimental colitis. Am. J. Pathol. 169, 2014–2030 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bakirtzi, K. et al. The neurotensin-HIF-1α-VEGFα axis orchestrates hypoxia, colonic inflammation, and intestinal angiogenesis. Am. J. Pathol. 184, 3405–3414 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Warny, M. et al. p38 MAP kinase activation by Clostridium difficile toxin A mediates monocyte necrosis, IL-8 production, and enteritis. J. Clin. Invest. 105, 1147–1156 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, X. et al. Saccharomyces boulardii inhibits ERK1/2 mitogen-activated protein kinase activation both in vitro and in vivo and protects against Clostridium difficile toxin A-induced enteritis. J. Biol. Chem. 281, 24449–24454 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Yu, H., et al. Cytokines are markers of the Clostridium difficile-induced inflammatory response and predict disease severity. Clin. Vaccine Immunol. 24, e00037-17 (2017).

  23. Carter, G. P. et al. Defining the roles of TcdA and TcdB in localized gastrointestinal disease, systemic organ damage, and the host response during Clostridium difficile infections. mBio 6, e00551 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Duran, W. N., Breslin, J. W. & Sanchez, F. A. The NO cascade, eNOS location, and microvascular permeability. Cardiovasc. Res. 87, 254–261 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ayrapetov, M. K. et al. Activation of Hif1α by the prolylhydroxylase inhibitor dimethyoxalyglycine decreases radiosensitivity. PLoS ONE 6, e26064 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shah, Y. M., Matsubara, T., Ito, S., Yim, S. H. & Gonzalez, F. J. Intestinal hypoxia-inducible transcription factors are essential for iron absorption following iron deficiency. Cell Metab. 9, 152–164 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Holmes, K., Roberts, O. L., Thomas, A. M. & Cross, M. J. Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell. Signal. 19, 2003–2012 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Scaldaferri, F. et al. VEGF-A links angiogenesis and inflammation in inflammatory bowel disease pathogenesis. Gastroenterology 136, 585–595 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Danese, S. Negative regulators of angiogenesis in inflammatory bowel disease: thrombospondin in the spotlight. Pathobiology 75, 22–24 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Kanazawa, S. et al. VEGF, basic-FGF, and TGF-β in Crohn’s disease and ulcerative colitis: a novel mechanism of chronic intestinal inflammation. Am. J. Gastroenterol. 96, 822–828 (2001).

    CAS  PubMed  Google Scholar 

  31. Tsiolakidou, G., Koutroubakis, I. E., Tzardi, M. & Kouroumalis, E. A. Increased expression of VEGF and CD146 in patients with inflammatory bowel disease. Digest. Liver Dis. 40, 673–679 (2008).

    Article  CAS  Google Scholar 

  32. Kapsoritakis, A. et al. Vascular endothelial growth factor in inflammatory bowel disease. Int. J. Colorectal Dis. 18, 418–422 (2003).

    Article  PubMed  Google Scholar 

  33. LaMont, J. T. & Kandel, G. P. Toxic megacolon in ulcerative colitis. Early diagnosis and management. Hosp. Pract. 21, 102–106 (1986).

    Article  Google Scholar 

  34. Kurose, I. et al. Clostridium difficile toxin A-induced microvascular dysfunction. Role of histamine. J. Clin. Invest. 94, 1919–1926 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hirota, S. A. et al. Hypoxia-inducible factor signaling provides protection in Clostridium difficile-induced intestinal injury. Gastroenterology 139, 259–269.e253 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Yu, H. et al. Identification of toxemia in patients with Clostridium difficile infection. PLoS ONE 10, e0124235 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Steele, J. et al. Systemic dissemination of Clostridium difficile toxins A and B is associated with severe, fatal disease in animal models. J. Infect. Dis. 205, 384–391 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, Z., et al. Toxin-mediated paracellular transport of antitoxin antibodies facilitates protection against Clostridium difficile infection. Infect. Immun. 83, 405–416 (2014).

  39. Hao, Q., Wang, L. & Tang, H. Vascular endothelial growth factor induces protein kinase D-dependent production of proinflammatory cytokines in endothelial cells. Am. J. Physiol. Cell Physiol. 296, C821–C827 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Jarboe, J., Gupta, A. & Saif, W. Therapeutic human monoclonal antibodies against cancer. Methods Mol. Biol. 1060, 61–77 (2014).

    Article  PubMed  Google Scholar 

  41. FDA approves first biosimilar to treat cancer. Cancer Discov. 7, 1206 (2017).

  42. Chen, M. L., Pothoulakis, C. & LaMont, J. T. Protein kinase C signaling regulates ZO-1 translocation and increased paracellular flux of T84 colonocytes exposed to Clostridium difficile toxin A. J. Biol. Chem. 277, 4247–4254 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. He, D. et al. Clostridium difficile toxin A causes early damage to mitochondria in cultured cells. Gastroenterology 119, 139–150 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Binion, D. G. et al. Enhanced leukocyte binding by intestinal microvascular endothelial cells in inflammatory bowel disease. Gastroenterology 112, 1895–1907 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Bakirtzi, K. et al. Neurotensin promotes the development of colitis and intestinal angiogenesis via Hif-1α-miR-210 signaling. J. Immunol. 196, 4311–4321 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Ma, X., Zhang, H., Xue, X. & Shah, Y. M. Hypoxia-inducible factor 2α (HIF-2α) promotes colon cancer growth by potentiating Yes-associated protein 1 (YAP1) activity. J. Biol. Chem. 292, 17046–17056 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen, X. et al. A mouse model of Clostridium difficile-associated disease. Gastroenterology 135, 1984–1992 (2008).

    Article  PubMed  Google Scholar 

  48. Huss, W. J., Hanrahan, C. F., Barrios, R. J., Simons, J. W. & Greenberg, N. M. Angiogenesis and prostate cancer: identification of a molecular progression switch. Cancer Res. 61, 2736–2743 (2001).

    CAS  PubMed  Google Scholar 

  49. Cho, S. J., George, C. L., Snyder, J. M. & Acarregui, M. J. Retinoic acid and erythropoietin maintain alveolar development in mice treated with an angiogenesis inhibitor. Am. J. Respir. Cell Mol. Biol. 33, 622–628 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Basu, A. et al. Overexpression of vascular endothelial growth factor and the development of post-transplantation cancer. Cancer Res. 68, 5689–5698 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Thurston, G. et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286, 2511–2514 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Hu, M. Y. et al. Prospective derivation and validation of a clinical prediction rule for recurrent Clostridium difficile infection. Gastroenterology 136, 1206–1214 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W.-R. Lie (EMD Millipore) for help with the cytokine assays and T. Fei (Dana Farber Cancer Institute) for technical help. This work was supported by an Irving W. and Charlotte F. Rabb Award (to X.C.), Crohn’s and Colitis Foundation of America Career Development Award (to X.C.), Young Investigator Award for Probiotic Research (to X.C.), NIH/NIDDL grant no. P30 DK 41301 (to C.P.), NIH/NIDDK grant no. U01 DK110003 (to C.P.), NIH/NIAID R01 grant no. DK60729 (to C.P.), fellowship from the Crohn’s and Colitis Foundation of America (to K.B.), Foundation of China National Key Clinical Discipline (to J.W.), Foundation of China Scholarship Council (to J.Huang), National Health and Medical Research Council of Australia grant no. 1107812 (to D.L.), Australian Research Council Future Fellowship grant no. FT120100779 (to D.L.) and NIH/NIAID R01 grant nos AI116596 (to C.P.K.) and U19 AI 109776 (to C.P.K.).

Author information

Authors and Affiliations

Authors

Contributions

X.C., C.P.K., J.Huang, D.L., C.P. and J.W. were involved in study design, analysis and interpretation of data, drafted the manuscript and obtained funding. J.Huang, J.A.V.G., Y.M.S., K.B., H.X., X.Y., W.Z., Y.Z., J.D.G., S.J.M., S.L., D.P.-S., K.S.S., I.J.P. and J.Hansen contributed towards the acquisition of data. C.P., Y.M.S., A.C.M., M.H. and S.Y.-H. provided material support.

Corresponding authors

Correspondence to Jianping Wang or Xinhua Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–7, Supplementary Tables 1 and 2, Supplementary References.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Kelly, C.P., Bakirtzi, K. et al. Clostridium difficile toxins induce VEGF-A and vascular permeability to promote disease pathogenesis. Nat Microbiol 4, 269–279 (2019). https://doi.org/10.1038/s41564-018-0300-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0300-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing