Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fungal ligands released by innate immune effectors promote inflammasome activation during Aspergillus fumigatus infection

Abstract

Invasive pulmonary aspergillosis causes substantial mortality in immunocompromised individuals. Recognition of Aspergillus fumigatus by the host immune system leads to activation of the inflammasome, which provides protection against infection. However, regulation of inflammasome activation at the molecular level is poorly understood. Here, we describe two distinct pathways that coordinately control inflammasome activation during A.fumigatus infection. The C-type lectin receptor pathway activates both MAPK and NF-κB signalling, which leads to induction of downstream mediators, such as the transcription factor IRF1, and also primes the inflammasomes. Toll-like receptor signalling through the adaptor molecules MyD88 and TRIF in turn mediates efficient activation of IRF1, which induces IRGB10 expression. IRGB10 targets the fungal cell wall, and the antifungal activity of IRGB10 causes hyphae damage, modifies the A.fumigatus surface and inhibits fungal growth. We also demonstrate that one of the major fungal pathogen-associated molecular patterns, β-glucan, directly triggers inflammasome assembly. Thus, the concerted activation of both Toll-like receptors and C-type lectin receptors is required for IRF1-mediated IRGB10 regulation, which is a key event governing ligand release and inflammasome activation upon A.fumigatus infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Downstream adaptors of TLRs and CLRs are required for inflammasome activation during A.fumigatus infection.
Fig. 2: The SYK–CARD9–MALT1 complex regulates IRF1 expression, whereas the activation of IRF1 is MyD88–TRIF dependent.
Fig. 3: IRF1 regulates the expression of GBPs and IRGB10 upon A.fumigatus infection.
Fig. 4: IRGB10, but not GBPs, contributes to the activation of inflammasomes in response to A.fumigatus.
Fig. 5: IRGB10 targets intracellular A.fumigatus, and IRGB10 peptides inhibit A.fumigatus growth and release fungal ligands that induce inflammasome activation.
Fig. 6: IRGB10 provides host protection against infection with A.fumigatus in vivo.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Dagenais, T. R. T. & Keller, N. P. Pathogenesis of Aspergillus fumigatus in invasive aspergillosis. Clin. Microbiol. Rev. 22, 447–465 (2009).

    Article  CAS  Google Scholar 

  2. Latgé, J.-P. Aspergillus fumigatus and aspergillosis. Clin. Microbiol. Rev. 12, 310–350 (1999).

    Article  Google Scholar 

  3. Segal, B. H. Aspergillosis. N. Engl. J. Med. 360, 1870–1884 (2009).

    Article  CAS  Google Scholar 

  4. Carvalho, A. et al. TLR3 essentially promotes protective class I-restricted memory CD8+ T-cell responses to Aspergillus fumigatus in hematopoietic transplanted patients. Blood 119, 967–977 (2012).

    Article  CAS  Google Scholar 

  5. Chai, L. Y. A. et al. Modulation of Toll-like receptor 2 (TLR2) and TLR4 responses by Aspergillus fumigatus. Infect. Immun. 77, 2184–2192 (2009).

    Article  CAS  Google Scholar 

  6. Kasperkovitz, P. V., Cardenas, M. L. & Vyas, J. M. TLR9 is actively recruited to Aspergillus fumigatus phagosomes and requires the N-terminal proteolytic cleavage domain for proper intracellular trafficking. J. Immunol. 185, 7614–7622 (2010).

    Article  CAS  Google Scholar 

  7. Loures, F. V. et al. Recognition of Aspergillus fumigatus hyphae by human plasmacytoid dendritic cells is mediated by Dectin-2 and results in formation of extracellular traps. PLoS Pathog. 11, e1004643 (2015).

    Article  Google Scholar 

  8. Meier, A. et al. Toll-like receptor (TLR) 2 and TLR4 are essential for Aspergillus-induced activation of murine macrophages. Cell. Microbiol. 5, 561–570 (2003).

    Article  CAS  Google Scholar 

  9. Netea, M. G. et al. Aspergillus fumigatus evades immune recognition during germination through loss of Toll-like receptor-4-mediated signal transduction. J. Infect. Dis. 188, 320–326 (2003).

    Article  CAS  Google Scholar 

  10. Ramaprakash, H., Ito, T., Standiford, T. J., Kunkel, S. L. & Hogaboam, C. M. Toll-like receptor 9 modulates immune responses to Aspergillus fumigatus conidia in immunodeficient and allergic mice. Infect. Immun. 77, 108–119 (2009).

    Article  CAS  Google Scholar 

  11. Serrano-Gómez, D., Leal, J. A. & Corbí, A. L. DC-SIGN mediates the binding of Aspergillus fumigatus and keratinophylic fungi by human dendritic cells. Immunobiology 210, 175–183 (2005).

    Article  Google Scholar 

  12. Balloy, V. et al. Involvement of Toll-like receptor 2 in experimental invasive pulmonary aspergillosis. Infect. Immun. 73, 5420–5425 (2005).

    Article  CAS  Google Scholar 

  13. Bellocchio, S. et al. The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J. Immunol. 172, 3059–3069 (2004).

    Article  CAS  Google Scholar 

  14. Gringhuis, S. I. et al. Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome. Nat. Immunol. 13, 246–254 (2012).

    Article  CAS  Google Scholar 

  15. Gross, O. et al. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459, 433–436 (2009).

    Article  CAS  Google Scholar 

  16. Hise, A. G. et al. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 5, 487–497 (2009).

    Article  CAS  Google Scholar 

  17. Karki, R. et al. Concerted activation of the AIM2 and NLRP3 inflammasomes orchestrates host protection against Aspergillus infection. Cell Host Microbe 17, 357–368 (2015).

    Article  CAS  Google Scholar 

  18. Lei, G. et al. Biofilm from a clinical strain of Cryptococcus neoformans activates the NLRP3 inflammasome. Cell Res. 23, 965–968 (2013).

    Article  CAS  Google Scholar 

  19. Saïd-Sadier, N., Padilla, E., Langsley, G. & Ojcius, D. M. Aspergillus fumigatus stimulates the NLRP3 inflammasome through a pathway requiring ROS production and the Syk tyrosine kinase. PLoS ONE 5, e10008 (2010).

    Article  Google Scholar 

  20. Tavares, A. H. et al. NLRP3 inflammasome activation by Paracoccidioides brasiliensis. PLoS Negl. Trop. Dis. 7, e2595 (2013).

    Article  Google Scholar 

  21. Triantafilou, M., Hughes, T. R., Morgan, B. P. & Triantafilou, K. Complementing the inflammasome. Immunology 147, 152–164 (2015).

    Article  Google Scholar 

  22. Werner, J. L. et al. Requisite role for the Dectin-1 β-glucan receptor in pulmonary defense against Aspergillus fumigatus. J. Immunol. 182, 4938–4946 (2009).

    Article  CAS  Google Scholar 

  23. Man, S. M., Karki, R. & Kanneganti, T.-D. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol. Rev. 277, 61–75 (2017).

    Article  CAS  Google Scholar 

  24. Man, S. M. et al. The transcription factor IRF1 and guanylate-binding proteins target activation of the AIM2 inflammasome by Francisella infection. Nat. Immunol. 16, 467–475 (2015).

    Article  CAS  Google Scholar 

  25. Man, S. M. et al. IRGB10 liberates bacterial ligands for sensing by the AIM2 and caspase-11–NLRP3 inflammasomes. Cell 167, 382–396.e17 (2016).

    Article  CAS  Google Scholar 

  26. Meunier, E. et al. Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida. Nat. Immunol. 16, 476–484 (2015).

    Article  CAS  Google Scholar 

  27. Rathinam, V. A. K. et al. TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by Gram-negative bacteria. Cell 150, 606–619 (2012).

    Article  CAS  Google Scholar 

  28. Mambula, S. S., Sau, K., Henneke, P., Golenbock, D. T. & Levitz, S. M. Toll-like receptor (TLR) signaling in response to Aspergillus fumigatus. J. Biol. Chem. 277, 39320–39326 (2002).

    Article  CAS  Google Scholar 

  29. Wang, J. E. et al. Involvement of CD14 and Toll-like receptors in activation of human monocytes by Aspergillus fumigatus hyphae. Infect. Immun. 69, 2402–2406 (2001).

    Article  CAS  Google Scholar 

  30. Ramirez-Ortiz, Z. G. et al. Toll-like receptor 9-dependent immune activation by unmethylated CpG motifs in Aspergillus fumigatus DNA. Infect. Immun. 76, 2123–2129 (2008).

    Article  CAS  Google Scholar 

  31. Hohl, T. M. et al. Aspergillus fumigatus triggers inflammatory responses by stage-specific β-glucan display. PLoS Pathog. 1, e30 (2005).

    Article  Google Scholar 

  32. Steele, C. et al. The β-glucan receptor Dectin-1 recognizes specific morphologies of Aspergillus fumigatus. PLoS Pathog. 1, e42 (2005).

    Article  Google Scholar 

  33. Plato, A., Hardison, S. E. & Brown, G. D. Pattern recognition receptors in antifungal immunity. Semin. Immunopathol. 37, 97–106 (2015).

    Article  CAS  Google Scholar 

  34. Bretz, C. et al. MyD88 signaling contributes to early pulmonary responses to Aspergillus fumigatus. Infect. Immun. 76, 952–958 (2008).

    Article  CAS  Google Scholar 

  35. Wevers, B. A. et al. Fungal engagement of the C-type lectin mincle suppresses Dectin-1-induced antifungal immunity. Cell Host Microbe 15, 494–505 (2014).

    Article  CAS  Google Scholar 

  36. Feng, H. et al. NLRX1 promotes immediate IRF1-directed antiviral responses by limiting dsRNA-activated translational inhibition mediated by PKR. Nat. Immunol. 18, 1299–1309 (2017).

    Article  CAS  Google Scholar 

  37. Negishi, H. et al. Evidence for licensing of IFN-γ-induced IFN regulatory factor 1 transcription factor by MyD88 in Toll-like receptor-dependent gene induction program. Proc. Natl Acad. Sci. USA 103, 15136–15141 (2006).

    Article  CAS  Google Scholar 

  38. Man, S. M., Place, D. E., Kuriakose, T. & Kanneganti, T.-D. Interferon-inducible guanylate-binding proteins at the interface of cell-autonomous immunity and inflammasome activation. J. Leukoc. Biol. 101, 143–150 (2017).

    Article  CAS  Google Scholar 

  39. Kim, B.-H., Shenoy, A. R., Kumar, P., Bradfield, C. J. & MacMicking, J. D. IFN-inducible GTPases in host defense. Cell Host Microbe 12, 432–444 (2012).

    Article  CAS  Google Scholar 

  40. Kim, B.-H. et al. Interferon-induced guanylate-binding proteins in inflammasome activation and host defense. Nat. Immunol. 17, 481–489 (2016).

    Article  CAS  Google Scholar 

  41. Heinekamp, T. et al. Interference of Aspergillus fumigatus with the immune response. Semin. Immunopathol. 37, 141–152 (2015).

    Article  CAS  Google Scholar 

  42. Caffrey, A. K. et al. IL-1α signaling is critical for leukocyte recruitment after pulmonary Aspergillus fumigatus challenge. PLoS Pathog. 11, e1004625 (2015).

    Article  Google Scholar 

  43. Chang, T.-H. et al. Dectin-2 is a primary receptor for NLRP3 inflammasome activation in dendritic cell response to Histoplasma capsulatum. PLoS Pathog. 13, e1006485 (2017).

    Article  Google Scholar 

  44. Drummond, R. A. & Brown, G. D. The role of Dectin-1 in the host defence against fungal infections. Curr. Opin. Microbiol. 14, 392–399 (2011).

    Article  CAS  Google Scholar 

  45. Geijtenbeek, T. B. H. & Gringhuis, S. I. Signalling through C-type lectin receptors: shaping immune responses. Nat. Rev. Immunol. 9, 465–479 (2009).

    Article  CAS  Google Scholar 

  46. Slack, E. C. et al. Syk-dependent ERK activation regulates IL-2 and IL-10 production by DC stimulated with zymosan. Eur. J. Immunol. 37, 1600–1612 (2007).

    Article  CAS  Google Scholar 

  47. Kuriakose, T., Zheng, M., Neale, G. & Kanneganti, T.-D. IRF1 is a transcriptional regulator of ZBP1 promoting NLRP3 inflammasome activation and cell death during influenza virus infection. J. Immunol. 200, 1489–1495 (2018).

    Article  CAS  Google Scholar 

  48. Takeuchi, O., Hoshino, K. & Akira, S. Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J. Immunol. 165, 5392–5396 (2000).

    Article  CAS  Google Scholar 

  49. Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    Article  CAS  Google Scholar 

  50. Hoshino, K. et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. 162, 3749–3752 (1999).

    CAS  Google Scholar 

  51. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  Google Scholar 

  52. Kawai, T., Adachi, O., Ogawa, T., Takeda, K. & Akira, S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11, 115–122 (1999).

    Article  CAS  Google Scholar 

  53. Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science 301, 640–643 (2003).

    Article  CAS  Google Scholar 

  54. Marakalala, M. J. et al. Differential adaptation of Candida albicans in vivo modulates immune recognition by Dectin-1. PLoS Pathog. 9, e1003315 (2013).

    Article  CAS  Google Scholar 

  55. Saijo, K. et al. Essential role of Src-family protein tyrosine kinases in NF-κB activation during B cell development. Nat. Immunol. 4, 274–279 (2003).

    Article  CAS  Google Scholar 

  56. Gurung, P. et al. Tyrosine kinase SYK licenses MyD88 adaptor protein to instigate IL-1α-mediated inflammatory disease. Immunity 46, 635–648 (2017).

    Article  CAS  Google Scholar 

  57. Gross, O. et al. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442, 651–656 (2006).

    Article  CAS  Google Scholar 

  58. Ruland, J., Duncan, G. S., Wakeham, A. & Mak, T. W. Differential requirement for Malt1 in T and B cell antigen receptor signaling. Immunity 19, 749–758 (2003).

    Article  CAS  Google Scholar 

  59. Matsuyama, T. et al. Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development. Cell 75, 83–97 (1993).

    Article  CAS  Google Scholar 

  60. Yamamoto, M. et al. A cluster of interferon-γ-inducible p65 GTPases plays a critical role in host defense against Toxoplasma gondii. Immunity 37, 302–313 (2012).

    Article  CAS  Google Scholar 

  61. da Silva Ferreira, M. E. et al. The akuB KU80 mutant deficient for nonhomologous end joining is a powerful tool for analyzing pathogenicity in Aspergillus fumigatus. Eukaryot. Cell 5, 207–211 (2006).

    Article  Google Scholar 

  62. Lamkanfi, M., Malireddi, R. K. S. & Kanneganti, T.-D. Fungal zymosan and mannan activate the cryopyrin inflammasome. J. Biol. Chem. 284, 20574–20581 (2009).

    Article  CAS  Google Scholar 

  63. Tzeng, T.-C. et al. A fluorescent reporter mouse for inflammasome assembly demonstrates an important role for cell-bound and free ASC specks during in vivo Infection. Cell Rep. 16, 571–582 (2016).

    Article  CAS  Google Scholar 

  64. Man, S. M. et al. Differential roles of caspase-1 and caspase-11 in infection and inflammation. Sci. Rep. 7, 45126 (2017).

    Article  CAS  Google Scholar 

  65. Coers, J. et al. Chlamydia muridarum evades growth restriction by the IFN-γ-inducible host resistance factor Irgb10. J. Immunol. 180, 6237–6245 (2008).

    Article  CAS  Google Scholar 

  66. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  Google Scholar 

  67. Briard, B. et al. Dirhamnolipids secreted from Pseudomonas aeruginosa modify anjpegungal susceptibility of Aspergillus fumigatus by inhibiting β1,3 glucan synthase activity. ISME J. 11, 1578–1591 (2017).

    Article  CAS  Google Scholar 

  68. Shepardson, K. M. et al. Hypoxia enhances innate immune activation to Aspergillus fumigatus through cell wall modulation. Microbes Infect. 15, 259–269 (2013).

    Article  CAS  Google Scholar 

  69. Loures, F. V. & Levitz, S. M. XTT assay of antifungal activity. Bio Protoc. 5, e1543 (2015).

    Article  Google Scholar 

  70. Torrent, M. et al. AMPA: an automated web server for prediction of protein antimicrobial regions. Bioinformatics 28, 130–131 (2012).

    Article  CAS  Google Scholar 

  71. Meher, P. K., Sahu, T. K., Saini, V. & Rao, A. R. Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC. Sci. Rep. 7, 42362 (2017).

    Article  CAS  Google Scholar 

  72. Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Kanneganti lab, the St. Jude Children’s Hospital Veterinary Pathology Core, Macromolecular Synthesis Core and Electron Microscopy Core. Images were acquired at the SJCRH Cell & Tissue Imaging Center, which is supported by SJCRH and NCI P30 CA021765–35. Work from our laboratories is supported by the US NIH (AI101935, AI124346, AR056296 and CA163507 to T.-D.K.) and the American Lebanese Syrian Associated Charities (to T.-D.K.). M.Y. is supported by the Research Program on Emerging and Re-emerging Infectious Diseases (18fk0108047h0002) and Japanese Initiative for Progress of Research on Infectious Diseases for Global Epidemic (18fm0208018h0002) from the Agency for Medical Research and Development.

Author information

Authors and Affiliations

Authors

Contributions

B.B., R.K., R.K.S.M., J.M., A.B., D.E.P. and J.L.P. performed the experiments. B.B., R.K., R.K.S.M., P.V., M.Y. and T.-D.K. analysed the data. B.B., A.B. and R.K. wrote the paper. T.-D.K. oversaw the project and funding.

Corresponding author

Correspondence to Thirumala-Devi Kanneganti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–10, Supplementary Tables 1–3, uncropped western blots.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briard, B., Karki, R., Malireddi, R.K.S. et al. Fungal ligands released by innate immune effectors promote inflammasome activation during Aspergillus fumigatus infection. Nat Microbiol 4, 316–327 (2019). https://doi.org/10.1038/s41564-018-0298-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0298-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing