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The EEEV is a mosquito-transmitted New World alphavirus in 
the Togaviridae family and is closely related to the Western 
(WEEV) and Venezuelan (VEEV) equine encephalitis viruses. 

Although relatively few human infections are reported annually, 
EEEV is one of the most severe mosquito-transmitted diseases with 
a 50–70% mortality rate and significant brain damage in most survi-
vors1–6. Florida is now considered one of the major sources of EEEV 
epidemics in the USA, with transmission occuring throughout  
the year7.

EEEV is an enveloped virus with a 11.5 kilobase single-
stranded, positive-sense RNA genome that generates two RNA 
transcripts: a full-length genomic RNA; and a subgenomic RNA 
encoding the structural genes, C-E3-E2-6K-E18. After transla-
tion, the structural polypeptide C-E3-E2-6K-E1 is cleaved at the 
endoplasmic reticulum into the capsid protein and E3-E2-6K-E1. 
Additional protein processing in the endoplasmic reticulum and 
the Golgi apparatus results in transport of E2–E1 heterodimers to 
the plasma membrane9 where encapsidation of the genomic viral 
RNA occurs. The surface of the mature virion displays 80 spikes 
of trimers of E2–E1 heterodimers10. Structural studies of related 
alphaviruses have established an architecture with T =  4 icosahe-
dral symmetry10–12. The E2 glycoprotein projects from the viral 
surface and consists of three domains: A, B and C11,12. Binding 
of EEEV E2 to poorly characterized host receptors is believed to 
initiate entry and endocytosis13. The acidic environment of the 
endosome induces conformational changes in the alphavirus E1 
and E2 glycoproteins, which allow for the exposure of the fusion 

loop, insertion into the host membrane11 and nucleocapsid escape 
into the cytoplasm.

Few anti-EEEV mAbs have been described14–16 and only one 
has protective activity in mice17. These anti-EEEV mAbs have been 
mapped using peptides to three linear epitopes on E2: the N ter-
minus of domain A; the N- and C-terminal arches of domain B; 
and the C terminus of domain C14,15. In comparison, the epitopes of 
several murine and human mAbs against VEEV, WEEV or the more 
distantly related arthritogenic alphaviruses, for example, chikun-
gunya virus (CHIKV), with therapeutic efficacy in vivo have been 
mapped8,14,15,18,19. These neutralizing mAbs predominantly recognize 
epitopes in domains A (residues 58–80) or B (residues 180–215) of 
the E2 glycoprotein, and inhibit infection at multiple steps including 
viral attachment, entry, fusion and egress18–23.

We isolated and purified a panel of murine mAbs against 
EEEV. Among these, 18 type-specific mAbs neutralized EEEV 
infection with 50% effective inhibitory concentration (EC50) val-
ues <  100 ng ml−1 and did not bind to WEEV or VEEV. Ten of these 
mAbs potently inhibited infection with EC50 values <  10 ng ml−1. In 
cell culture, most inhibited EEEV predominantly by blocking viral 
infection at a post-attachment step. We localized the epitopes of 
the majority of potently neutralizing mAbs to two solvent-exposed 
regions in domains A and B of the E2 glycoprotein. In vivo stud-
ies demonstrated that many of the neutralizing mAbs could protect 
mice against lethal subcutaneous or aerosol challenges by EEEV. 
Our results define the molecular basis for EEEV neutralization by 
protective mAbs and provide insight into the epitopes that could be 
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targeted for immunotherapy and vaccine development against this 
highly lethal virus.

Results
Generation of anti-EEEV mAbs. We hypothesized that antibod-
ies generated in the context of a live EEEV infection might have 
inhibitory activity. As EEEV is a biosafety level 3 select agent patho-
gen, performing B cell–myeloma cell fusions from infected animals 
presents technical challenges. To circumvent these issues, we engi-
neered a chimeric biosafety level 2 pathogen that incorporates the 
non-structural genes and RNA replication control elements of a 
Sindbis virus (SINV, strain TR339) with the structural genes (C-E3-
E2-6K-E1) of an EEEV isolate (strain FL93-939) (Supplementary 
Fig. 1a)24. SINV-EEEV replicated efficiently in cell culture but did 
not cause disease in outbred and Irf3–/– immunodeficient inbred 
mice (Supplementary Fig. 1b–e, and see text that follows).

To enhance the replication and immunogenicity of the attenu-
ated SINV-EEEV in vivo, we inoculated Irf3–/– C57BL/6 mice25. 
After infection and homologous boosting four weeks later, serum 
from Irf3–/– mice had robust neutralizing activity against SINV-
EEEV (end point titre >  1:10,000). Splenocytes were collected from 
mice, fused to myeloma cells and 76 hybridomas producing anti-
EEEV antibodies were isolated (Fig. 1a and Supplementary Table 1).  
Supernatant from 32 of the 76 hybridomas bound to EEEV viri-
ons purified from SINV-EEEV-infected cells and in a single end 
point dilution test, inhibited SINV-EEEV infection by 80% or more 
(Supplementary Table 1). These 32 mAbs were isotyped (all of the 
immunoglobulin IgG2c or IgG3 subclass) and purified by protein  
A affinity chromatography for subsequent study.

We evaluated the purified mAbs for their ability to recognize the 
EEEV E2 glycoprotein. To do this, we purified recombinant EEEV 
E2 glycoprotein after expression in bacteria and oxidative refold-
ing (Fig. 1b). Notably, 18 of 32 mAbs bound to the recombinant E2 
glycoprotein in an enzyme-linked immunosorbent assay (ELISA)  
(Fig. 1c). We also tested a set of 24 mAbs for cross-reactivity with 
related VEEV or WEEV (55 and 56% amino acid identity in the 
structural proteins). None of these anti-EEEV mAbs cross-reacted 
with the WEEV or VEEV structural proteins (Fig. 1d).

Neutralizing activity of mAbs. To assess the inhibitory activity 
of the anti-EEEV mAbs more quantitatively, we performed focus 
reduction neutralization tests with Vero cells while maintaining 
mAbs in the medium both before and after virus inoculation (pre/
post-attachment, Fig. 2a,c). We determined the concentration of 
mAb that reduced infection by 50, 90 or 99% (EC50, EC90 or EC99, see 
Table 1). Of the 33 mAbs tested, 18 inhibited SINV-EEEV with EC50 
values <  100 ng ml−1, and 10 mAbs showed exceptional potency 
with EC50 values <  10 ng ml−1and EC90 values <  100 ng ml−1. Four 
of these mAbs (EEEV-18, EEEV-69, EEEV-82, EEEV-86) had ‘elite’ 
neutralizing activity with EC99 values <  100 ng ml−1.

Antibody neutralization of alphaviruses can occur by inhibiting 
attachment, internalization or fusion, or by blocking assembly and 
budding18. To begin to define how the 11 most strongly neutral-
izing mAbs inhibited infection, we initially assessed whether they 
blocked virus attachment. Virus–mAb complexes were incubated 
with Vero cells at 4 °C; after extensive washing, viral RNA adsorbed 
to cells was detected by quantitative reverse-transcription PCR18,26. 
Notably, the four anti-EEEV mAbs with ‘elite’ neutralizing activ-
ity (EEEV-18, EEEV-69, EEEV-82, EEEV-86) did not reduce virus 
attachment (Fig. 2e). A modest (43–48%) inhibition of attachment 
was observed for neutralizing mAbs EEEV-3 or EEEV-66, although 
statistical significance was not attained. As a positive control, pre-
incubation of SINV-EEEV with soluble heparin, whose cell sur-
face analogue heparan sulfate is an attachment factor for EEEV27, 
diminished virus binding to target cells in a dose-dependent man-
ner (Fig. 2f). Incubation with higher concentrations of mAbs also 

failed to reduce virus attachment (Supplementary Fig. 2). We next 
performed post-attachment neutralization assays in which mAbs 
were incubated with SINV-EEEV after absorption to cells (post-
attachment, Fig. 2b,d). All of the potently neutralizing mAbs inhib-
ited SINV-EEEV infection when added after the virus was bound 
to cells, suggesting that at least part of their inhibitory activity was 
at a post-attachment step. We next tested whether our neutral-
izing mAbs could inhibit viral fusion using a plasma membrane 
fusion-from-without (FFWO) assay28. After allowing viral attach-
ment to Vero cells at 4 °C, mAbs were added and plasma membrane 
fusion was induced by a 37 °C pulse in an acidic (pH 5.5) medium. 
Subsequently, cells were propagated in medium supplemented with 
20 mM NH4Cl to prevent de novo infection via the endocytic path-
way, and were then stained for E2 antigen expression. Five of the 
mAbs tested (EEEV-3, EEEV-10, EEEV-18, EEEV-22 and EEEV-58) 
blocked virus plasma membrane fusion (Fig. 2g,h). For reasons that 
remain unclear (see Discussion), EEEV-66, EEEV-82, EEEV-102 
and EEEV-107 paradoxically enhanced plasma membrane fusion of 
the virus.

Epitope mapping by alanine-scanning mutagenesis. We used 
alanine-scanning mutagenesis coupled with HEK-293T cell-based 
expression and flow cytometry19,29 to identify residues in the E2 
glycoprotein required for mAb binding (Fig. 3a). Cells were trans-
fected with plasmids encoding individual alanine (or serine for 
alanine residues) substitutions (360 residues) in the E2 gene in 
the context of a pE2-6K-E1 expression plasmid. We defined criti-
cal residues as those with <  25% binding to a given individual mAb 
that retained >  70% binding to an anti-EEEV oligoclonal antibody 
control (Table 1, Supplementary Fig. 3 and Supplementary Table 2).  
We excluded from analysis mutations of cysteine residues and 
substitutions that globally altered E2 conformation, as defined by 
reduced binding of an oligoclonal antibody. A majority (13 of 16) 
of the neutralizing mAbs tested mapped to the ‘wing insertion’ 
of domain A (residues 52–82) or the distal region of domain B  
(β -strands A, B and E)11 of the E2 glycoprotein (Fig. 3a–c). The key 
loss-of-binding residues were highly conserved between the four 
(I, II, III and IV) EEEV subtypes (Fig. 3a). Although the domain 
B residues (I180, H181, S182, H213 and T215) required for mAb 
binding showed clear loss-of-binding phenotypes (Fig. 3d), some 
of the domain A residue changes (for example, D58, G59, D61 and 
M68) resulted in only partial loss-of-binding phenotypes (Fig. 3e). 
To extend these findings, we substituted selected residues in the A 
and B domains with bulkier and charged amino acids that might 
disrupt mAb interactions to a greater extent. We observed more 
profound loss-of-binding phenotypes when key domain B residues 
were substituted with arginine (Fig. 3f). Similarly, when the residues 
in domain A (D58, G59, D61, M68, K74 and L81) were mutated 
to arginine or glutamic acid, more pronounced loss of mAb bind-
ing phenotypes was observed with EEEV-5, EEEV-58, EEEV-66, 
EEEV-82, EEEV-102 and EEEV-107 (Fig. 3g, Supplementary Fig. 4  
and Supplementary Table 3). Mapping of the domain A and B  
residues onto the CHIKV E3–E2–E1 glycoprotein complex  
structure revealed continuous solvent-exposed patches in each 
domain (Fig. 3b,c).

Epitope mapping by neutralization escape. Alanine-scanning 
mutagenesis failed to map the epitopes of three inhibitory mAbs 
(EEEV-18, EEEV-82 and EEEV-102). As an alternative approach, 
we selected for neutralization escape mutants. We passaged SINV-
EEEV in the presence of individual neutralizing mAbs until cyto-
pathogenic effects were observed (3–4 passages), at which point 
the virus became resistant to neutralization. Remarkably, all three 
viral escape variants were reciprocally resistant to neutralization by 
the other mAbs in this group, suggesting they bound to an over-
lapping or shared epitope (Fig. 4a). To identify the escape muta-

NATuRE MiCRoBioLoGy | VOL 4 | JANUARY 2019 | 187–197 | www.nature.com/naturemicrobiology188

http://www.nature.com/naturemicrobiology


ArticlesNature Microbiology

tions, we cloned and sequenced the viral RNA. Unexpectedly, all 
of the sequenced EEEV-18 escape variants (16 of 16 clones) con-
tained a 6-amino acid repeat insertion (192GAQVKY197) in domain B  
(Fig. 4b,c and Supplementary Fig. 5). All EEEV-82 escape variant 
clones (13 of 13 clones) contained a G192R mutation in E2, whereas 
the EEEV-102 escape variant contained mutations in both domain 
A (M68T; 3 of 4 clones) and domain B (L227R; 4 of 4 clones)  
(Fig. 4b,c and Supplementary Fig. 5). The M68R and G192R muta-
tions were introduced individually into the pE2-6K-E1 plasmid to 
confirm the loss-of-function phenotype. Mutations in M68R or 
G192R of the E2 gene resulted in abolished binding of EEEV-18, 
EEEV-82 and EEEV-102 to cells transfected with the pE2-6K-E1 
expression plasmid (Fig. 4d). When the M68T, G192R and L227R 
mutations were introduced into the SINV-EEEV infectious comple-
mentary DNA (cDNA) clone, the resultant viruses showed dimin-
ished neutralization by EEEV-18, EEEV-82 and EEEV-102 (Fig. 4e). 
Finally, we tested whether the four neutralization escape variants were 
resistant to inhibition by the remaining potently neutralizing mAbs. 
Although all of the strongly neutralizing domain B mAbs (EEEV-3, 
EEEV-10, EEEV-22, EEEV-69 and EEEV-86) completely neutralized  

the escape variants with EC50 values similar to the parental virus, 
domain A (EEEV-5 and EEEV-66) and domain A/B (EEEV-18, 
EEEV-58 and EEEV-107) mAbs failed to neutralize the escape vari-
ants as efficiently (Supplementary Fig. 6).

MAb protection in mice. We assessed whether the mAbs could 
confer protection against EEEV infection in vivo (Fig. 5). We tested 
a subset of mAbs with differing neutralization potencies using a 
lethal challenge model in five-week-old CD-1 mice with a highly 
pathogenic EEEV (strain FL93-939) engineered to express nanolu-
ciferase with little effect on virulence30. Mice received a single 100 µ g 
(5 mg kg−1) dose of EEEV mAbs via the intraperitoneal route either 
before (− 24 h) or after (+ 24 h) subcutaneous (103 plaque-forming 
units (PFU) of EEEV) or aerosol (50–100 median lethal dose, LD50) 
inoculation of EEEV. Mice treated with neutralizing anti-EEEV 
mAbs (EEEV-3, EEEV-22, EEEV-43, EEEV-58, EEEV-73, EEEV-82 
and EEEV-86; EC50 values of 2.2–761 ng ml−1) before subcutane-
ous challenge had 80–100% survival rates, whereas administration 
of EEEV-26B, a poorly neutralizing mAb (EC50 >  12,500 ng ml−1) 
showed little protection (Fig. 5a). When mice were subjected to 
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a subcutaneous challenge and administered a single dose of mAb 
24 h after infection (Fig. 5b) most neutralizing mAbs (EEEV-3, 
EEEV-18, EEEV-43, EEEV-58, EEEV-73 and EEEV-82) exhibited 
moderate-to-high levels of protection (40–100% survival rates), 
whereas EEEV-22, EEEV-86 and EEEV-26B exhibited less pro-
tection. Unexpectedly, the modestly neutralizing EEEV-43 mAb  
(EC50 of 761 ng ml−1) still conferred protection (70% survival 
rate) when administered as post-exposure therapy in this model. 
Additions of mAb combinations targeting domain A (EEEV-18) 
and domain B (EEEV-3) and subcutaneous challenge resulted in 
100% protection as prophylaxis and 75% protection as post-expo-
sure therapy (Fig. 5a,b).

As EEEV is also highly pathogenic via the aerosol route, we exam-
ined the efficacy of the mAbs on an aerosol challenge with 50–100 
LD50 of EEEV FL93-939. Among the mAbs tested, a majority (EEEV-3, 
EEEV-5, EEEV-18, EEEV-58 and EEEV-82) protected against death 
(70–100% survival) when administered as prophylaxis (Fig. 5c).  
Administration of a mAb combination (EEEV-3 +  EEEV-18)  
as prophylaxis resulted in a 94% survival rate (Fig. 5c). In vivo imaging  

of mice treated with mAbs EEEV-3, EEEV-18, EEEV-82 and EEEV-
86, but not the isotype control mAb, showed marked reductions in 
viral replication as judged by a decrease in light signal 4 days post-
infection (Fig. 5e). However, in the most stringent model of protec-
tion, post-exposure therapy at 1 day after aerosol challenge, lower 
survival rates (10–20%) were observed with individual neutralizing 
mAbs EEEV-3, EEEV-5, EEEV-18, EEEV-22, EEEV-58, EEEV-69, 
EEEV-82 and EEEV-86 or a combination of neutralizing mAbs 
(EEEV-3 +  EEEV-18) (Fig. 5d).

Discussion
EEEV is a highly pathogenic, encephalitic alphavirus that lacks 
approved vaccines or therapies. We generated a panel of 76 mAbs 
that bound to EEEV-infected cells, including 18 strongly neutral-
izing mAbs. Ten of the 18 mAbs exhibited potent neutralizing 
activity with EC50 values of < 10 ng ml−1. Mapping studies show 
that these strongly neutralizing mAbs principally recognized epit-
opes in domains A and/or B of the E2 glycoprotein. Mechanism of  
action studies revealed that most of the inhibitory mAbs blocked 
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EEEV-86, EEEV-102 and EEEV-107 are the mean and s.d. of four independent experiments performed in duplicate. Experiments with EEEV-18 and EEEV-69 
data are the mean and s.d. of eight independent experiments performed in duplicate. The isotype and no mAb control data are the mean and s.d. of ten 
independent experiments performed in duplicate (one-way ANOVA with Dunnett’s post-test; **P <  0.01; ****P <  0.0001). NS, not significant. g,h, FFWO. 
SINV-EEEV was adsorbed to BHK-21 cells for 4 °C. Unbound virus was removed and cells were incubated with anti-EEEV mAbs at 4 °C. FFWO was induced 
by subjecting the cells to acidic pH (pH 5.5) and a 37 °C degree pulse. As a negative control, cells were subjected to a physiologically relevant pH  
(pH 7.6). Subsequently, cells were incubated in medium in the presence of NH4Cl to prevent subsequent endosomal acidification. Fusion inhibition (g) was 
determined from flow cytometry data (example with EEEV-3 in h) by staining for EEEV E2-positive cells (pH 5.5 condition) and subtracting the background 
at pH 7.6 (average of 3.5%). Data with anti-EEEV mAbs are the mean and s.d. of three independent experiments performed in duplicate. The isotype and 
no mAb control are the mean and s.d. of six independent experiments performed in duplicate. Anti-EEEV mAbs were compared to isotype control  
(one-way ANOVA with Dunnett’s post-test; **P <  0.01; ***P <  0.001; ****P <  0.0001). NS, not significant. SSC-A, side scatter area.
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infection at a post-attachment stage, with a subset inhibiting viral 
fusion. Many of the neutralizing mAbs had protective activity 
against EEEV in vivo, as judged by the outcome in lethal subcutane-
ous and aerosol challenge models in mice.

Although prior studies have generated mAbs against the EEEV 
proteins, these mAbs either lacked neutralization activity or were 
not characterized extensively because of biosafety limitations14–17. 
One cross-reactive, non-neutralizing anti-EEEV mAb that was 
evaluated had moderate protective efficacy (~50%) against VEEV 
challenge in mice17. Presumably, Fc effector functions contributed 
to the protection against VEEV by this mAb, as has been postulated 
for non-neutralizing antibodies against other arthritogenic alpha-
viruses, including Semliki Forest virus31 and CHIKV22. Whereas 
others have immunized mice with recombinant EEEV E2 glycopro-
tein or inactivated EEEV to obtain mAbs15,16, we speculate that we 
obtained a large number of neutralizing mAbs because mice were 
immunized with a replicating virus that displayed EEEV structural 
proteins in their native form. At present, it remains unclear why we 
obtained only type-specific neutralizing mAbs.

Neutralizing antibodies against alphaviruses inhibit infection at 
several stages in the viral replication cycle including attachment, 
entry, fusion or egress. Our most inhibitory neutralizing mAbs 
to E2 domains A and/or B did not block viral attachment to cells; 
instead, they inhibited infection at a post-attachment stage. Plasma 
membrane fusion assays showed that several of these mAbs block 
pH-dependent fusion with membranes. Among the mAbs tested 
that inhibited infection at a post-attachment step, generally, those 
recognizing epitopes in domain B (EEEV-3, EEEV-10, EEEV-22, 
EEEV-69 and EEEV-86) showed less potency when antibody was 
added after the virus attached to the cells. A previous study with 
domain B mAbs against CHIKV suggested that bivalent engage-
ment of the virion was necessary for potent neutralization18. It is 
possible that the anti-EEEV mAbs may also require bivalent engage-
ment for complete neutralization; this mode of recognition may be 
technically difficult to achieve once the virion has attached to cells 
because some epitopes are unavailable for binding. One of the neu-
tralizing mAbs, EEEV-69, paradoxically increased virus attachment 
to Vero cells; unexpectedly, increased plasma membrane fusion was 
observed with EEEV-66, EEEV-82, EEEV-102 and EEEV-107. These 
results are analogous to prior reports with anti-VEEV and anti-
SINV mAbs, both of which increased attachment by stabilizing the 

interaction between the virus and cells32,33. The increase in fusion 
could be due to antibody-induced exposure of cryptic epitopes that 
facilitates virus binding to the plasma membrane, a mechanism 
previously reported with a flavivirus34. This phenomenon may not 
impact the neutralizing activity of these mAbs if (1) neutralization 
occurs at a stage in the entry pathway before fusion or (2) plasma 
membrane fusion is not equivalent to endosomal fusion.

Some reports have speculated that domains A and B on the E2 
glycoprotein contain a site of receptor engagement for multiple 
alphaviruses11–13. A recent study mapped the binding site of Mxra8, 
a receptor for several arthritogenic alphaviruses, to residues within 
the A and B domains on CHIKV E2 glycoprotein24. Using a combi-
nation of alanine-scanning and targeted mutagenesis of E2 and neu-
tralization escape selection, we mapped the epitopes for neutralizing 
anti-EEEV mAbs to residues within these domains. Regions in the 
E2 domains A and B have been implicated as epitopes for neutraliz-
ing mAbs against other alphaviruses including VEEV, CHIKV, SINV 
and Ross River virus18,22,35–37. Our most potently neutralizing mAbs 
(EEEV-5, EEEV-58, EEEV-66, EEEV-82, EEEV-102 and EEEV-107) 
recognize an epitope in the ‘wing region’ (residues 51–81) on E2, a 
solvent-exposed site at the distal tip of the A domain11. The neutral-
izing mAbs that mapped to domain B preferentially bound to two 
epitopes at residues 180–182 (EEEV-3, EEEV-10, EEEV-21, EEEV-
22 and EEEV-86) or residues 213–215 (EEEV-4, EEEV-19, EEEV-
21, EEEV-60 and EEEV-69). Cryo-electron microscopy (cryo-EM) 
studies with two neutralizing anti-VEEV mAbs (F5 and 3B4C-4) 
showed binding to sites proximal to and within the wing region  
of domain A (residues 73–120) or to residues 177–223 in 
domain B, respectively38. These mAbs are thought to neutralize  
VEEV infection by preventing the structural rearrangements 
required for fusion.

Through neutralization escape selection, we also mapped neu-
tralizing mAbs (EEEV-18, EEEV-58 and EEEV-102) to residues 
spanning domains A and B (residues 68, 192–197 and 227). We 
note that the corresponding M68 residue on the CHIKV p62-E1 
structure is located beneath the β -strand i6 (residues 74–79) and 
is not solvent-exposed11. Residue M68 is tightly packed against 
residue L81, a key binding residue for mAbs EEEV-58, EEEV-66, 
EEEV-82, EEEV-102 and EEEV-107. We hypothesize that the muta-
tion of either residue (M68 or L81) perturbs the conformational  
display of the domain A ‘wing region’ epitope. Mutation of the  

Table 1 | Profiles of strongly neutralizing antibodies against EEEV

Mutagenesis mapping Neutralization against SiNV-EEEV

Antibody isotypea E2 domain E2 alanine/arginine residues which 
reduced mAb binding

EC50 (ng ml−1) EC90 (ng ml−1) EC99 (ng ml−1)

EEEV-3 IgG2c B I180, H181, S182 5.6 53.2 619.5

EEEV-5 IgG2c A K74 31.8 126.1 566.3

EEEV-10 IgG2c B I180, H181, S182 3.4 33.5 411.6

EEEV-18 IgG3 A/Bb M68, G192, A193, Q194, V195, 
K196, Y197

7.7 23.2 78.1

EEEV-22 IgG2c B I180, H181, S182 6.3 42.7 341.9

EEEV-58 IgG2c A/B K56, T57, D58, G59, D61, M68, K74, 
S75, L81, G192

4.3 66.3 1302

EEEV-66 IgG2c A D58, L81 1.9 19.6 244.8

EEEV-69 IgG3 B H213, T215 9.3 17.7 35.7

EEEV-82 IgG3 A/B M68, L81, G192 6.8 17.2 47.2

EEEV-86 IgG2c B I180, H181, S182 2.2 12.5 82.1

EEEV-102 IgG3 A/B M68, L81, G192, L227 4.3 20.3 110.7

EEEV-107 ND A/B T57, D58, M68, Q73, S75, L81, G192 11.4 96.2 985.3
aThe Ig isotype was determined by ELISA.  bA/B indicates domains A and B. ND, not done.
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Fig. 3 | Neutralizing mAbs map to domain A or B on the E2 glycoprotein. a, Epitope residues of anti-EEEV mAbs identified by alanine-scanning 
mutagenesis and viral escape are indicated on the EEEV subtype I (strain FL93-939, GenBank accession no. EF151502), subtype II (strain BR56-BeAn5122, 
GenBank accession no. AF159559), subtype III (strain PE-0.0155, GenBank accession no. DQ241304) and subtype IV (BR85-436087, GenBank accession 
no. AF159561) E2 glycoprotein sequences. Anti-EEEV mAbs mapped to domain A or A/B are depicted as circles and mAbs mapped to domain B are 
depicted as squares. b, Key domain B residues necessary for mAb engagement are highlighted in purple on the CHIKV p62-E1 monomer (PDB 3N41) and 
trimer (PDB 5ANY). c, Key domain A residues necessary for mAb engagement are also highlighted in purple on the CHIKV p62-E1 monomer (PDB 3N41) 
and trimer (PDB 5ANY). b,c, The E1 glycoprotein is in grey, the E2 glycoprotein is in cyan and the E1 fusion loop is in orange. d, The binding data of key 
domain B identified from alanine-scanning mutagenesis are shown for potently neutralizing mAbs. e, The binding data of key domain A residues identified 
from alanine-scanning mutagenesis are shown for potently neutralizing mAbs. f, The binding data of key domain B identified from arginine or glutamic acid 
mutagenesis are shown for potently neutralizing mAbs. g, The binding data of key domain A residues identified from arginine or glutamic acid mutagenesis 
are shown for potently neutralizing mAbs. Residues were identified as critical if < 25% mAb binding was observed and > 70% binding was retained by the 
oligoclonal EEEV mAb control. Data are the mean and s.d. from two independent experiments.
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solvent-exposed residue G192 markedly reduced binding and neutral-
ization of mAbs EEEV-18, EEEV-58 and EEEV-102. In the CHIKV 
p62-E1 structure, the distance between residues M68 and G192 is 
~28 Å11. This distance is sufficient for engagement by a fragment anti-
gen-binding (Fab) molecule since the antigen-binding site spans ~35 Å.

We also assessed whether the escape variants selected against 
domain A/B mAbs were susceptible to inhibition by the remain-
ing potently neutralizing mAbs. The domain B mAbs (EEEV-3, 
EEEV-10, EEEV-22, EEEV-69 and EEEV-86) showed no loss in 
neutralization potency against the escape variants. However, four 
potently inhibitory mAbs, EEEV-5 (domain A), EEEV-58 (domain 
A/B), EEEV-66 (domain A) and EEEV-107 (domain A/B), showed 
reduced ability to neutralize the escape variants. The domain 
A-specific mAbs EEEV-5 and EEEV-66 did not neutralize the EEEV-
18 and EEEV-102 escape variants, and the domain A/B-specific 

mAbs EEEV-58 and EEEV-107 failed to neutralize all three escape 
variants. Although we speculate that the binding site of EEEV-66 
may be similar to or overlap that of mAbs EEEV-18, EEEV-82 and 
EEEV-102, higher resolution structural studies (for example, X-ray 
crystallography or cryo-EM) will be required to determine the pre-
cise antibody footprints.

The composite AB domain epitope, which bridges the two 
domains, is analogous to the site recognized by the neutralizing 
anti-CHIKV mAb (CHK-265), which binds and cross-links these 
domains on adjacent spikes on the virion surface18. The cross-
linking of two E2 subunits by CHK-265 restricts domain B from 
undergoing conformational changes and prevents the exposure of 
the fusion loop located underneath in the E1 subunit. A similar 
mechanism may occur with the strongly neutralizing EEEV mAbs 
EEEV-18, EEEV-82, EEEV-102 and EEEV-107.
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Fig. 4 | Characterization of EEEV mAb escape mutants. a, Neutralization escape virus pools were tested for sensitivity to the mAbs used for selection. 
Serially diluted mAbs and 102 FFU of each passaged virus were incubated for 1 h and then added to Vero cell monolayers. Sixteen hours later, viral antigens 
containing foci were stained and infection was normalized to infected wells containing no mAb. Data are the mean and s.d. of two independent experiments 
performed in duplicate. b,c, Neutralization escape mutations were identified by Sanger sequencing. EEEV-18, EEEV-82 and EEEV-102 escape mutations are 
mapped onto the CHIKV p62-E1 trimer (PDB 5ANY) (b) and the monomer structure (PDB 3N41) (c). The E1 glycoprotein is in grey, the E2 glycoprotein is in 
cyan and the E1 fusion loop is in orange. d, Neutralization escape mutations were engineered into a structural gene (C-E3-E2-6K-E1) vector and expressed 
in HEK-293T cells. Cells were stained using the selection mAb and analysed by flow cytometry. Data are the mean and s.d. from three independent 
experiments, with the exception of EEEV-18 (four experiments). e, Escape mutations were engineered into the SINV-EEEV infectious cDNA clone. Mutant 
viruses were generated and tested for sensitivity to the mAbs used for selection (EEEV-18, EEEV-82 and EEEV-102) and a domain B mAb (EEEV-3). Data are 
the mean and s.d. of two independent experiments performed in duplicate.
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Several of our highly neutralizing mAbs showed substantial pro-
tective efficacy when mice were challenged with EEEV by a sub-
cutaneous or aerosol route. In the lethal subcutaneous challenge 
models, mAb protection correlated most consistently with potent 
neutralization activity and binding to residues spanning domains 
A and B of the E2 glycoprotein (EEEV-18, EEEV-58 and EEEV-82). 
One strongly neutralizing domain B mAb (EEEV-3) also protected 
efficiently in these models. Most of these mAbs (EEEV-3, EEEV-18 

and EEEV-58) neutralized infection at a post-attachment stage and 
efficiently blocked viral plasma membrane fusion. Unexpectedly, 
EEEV-43, a weakly neutralizing mAb (EC50 of 761 ng ml−1), and 
EEEV-73 (EC50 of 49.7 ng ml−1), a moderately neutralizing mAb, 
both protected when administered as prophylaxis or therapy. 
Analogously, a non-neutralizing anti-EEEV mAb protected against 
subcutaneous EEEV challenge in mice when administered 1 day 
before infection17. Although further studies are warranted, we 
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***P <  0.001.
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speculate that Fc effector functions may contribute to the in vivo 
efficacy of weakly to moderately neutralizing protective mAbs. 
Alternatively, the neutralization assays with Vero cells may not fully 
reflect the inhibitory activity against cell targets in vivo.

The post-exposure mAb therapy trials in the context of aerosol 
challenge of mice showed limited efficacy. After aerosol challenge, 
encephalitic alphaviruses rapidly enter the brain from the olfactory 
neuroepithelium via olfactory neurons39,40. The treatment failure we 
observed in the context of aerosol challenge could be due to one of 
several reasons: (1) the virus spreads rapidly to the brain via olfac-
tory neurons whereas antibody entry is limited by the blood–brain 
barrier41,42; (2) the combination of high levels of virus and limiting 
amounts of a single mAb in the brain may result in rapid neutral-
ization escape. Indeed, the use of a single neutralizing anti-CHIKV 
mAb promoted escape variants in vivo22,43. However, since com-
bination therapy with highly neutralizing domain A- and domain 
B-reactive antibodies failed to improve clinical outcome after aero-
sol challenge, virus entry into the brain may represent a point after 
which mAb therapy has limited efficacy against EEEV in mice.

Currently, there are no approved vaccines against EEEV. Vaccine 
efforts against HIV, hepatitis C virus (HCV) and influenza virus 
focus on eliciting neutralizing antibodies to protective epitopes 
on viral envelope proteins through ‘reverse vaccinology’44–46. Our 
study identifies specific epitopes on the E2 glycoprotein that can be 
engaged by potently neutralizing EEEV mAbs. Studies are planned 
to apply this information to the next generation of vaccine design 
against EEEV and other encephalitic alphaviruses.

Methods
Animal ethics statement. All animal procedures were carried out in accordance 
with Association for Assessment and Accreditation of Laboratory Animal Care-
approved institutional guidelines for animal care and use and approved by the 
Institutional Animal Care and Use Committees at the University of Pittsburgh 
and Washington University School of Medicine. Injections were performed under 
anaesthesia that was induced and maintained with ketamine hydrochloride and 
xylazine; all efforts were made to minimize suffering.

Cell lines and plasmids. Vero, HEK-293T and BHK-21 cells were obtained from 
the American Type Culture Collection and propagated in DMEM supplemented 
with 5% (Vero and BHK-21) or 10% (HEK-293T) foetal bovine serum (FBS; 
Omega Scientific), 100 U ml−1 penicillin, 100 µ g ml−1 streptomycin and 10 mM 
HEPES. All cell lines were tested and judged free of Mycoplasma contamination 
using a commercial kit. The plasmids pKR780-2-EEEV, pKR780-2-VEEV and 
pKR780-2-WEEV are comprised of the codon-optimized pE2-6K-E1 genes of 
EEEV FL93-939, VEEV TrD and WEEV CB87, respectively, under the control of 
a chicken β -actin promoter, which have been cloned into the pCAGGS expression 
vector (Addgene). Replication-competent SINV chimeric viruses were constructed 
by replacing the SINV TR339 structural protein genes with the EEEV FL93-939 
structural protein genes under control of the SINV subgenomic promoter in the 
TR339 cDNA clone47. The cDNA clones of EEEV TrD, FL93-939 wild-type (WT) 
and nanoluciferase-expressing challenge viruses have been described30,48.

Virus production. All viruses were produced by plasmid linearization, in 
vitro transcription with SP6 or T7 DNA-dependent RNA polymerase and 
electroporation into BHK-21 cells. Virus mutants were generated using a 
QuikChange II XL Site-Directed Mutagenesis Kit (Agilent) and verified by DNA 
sequencing. Virus supernatant (P0) was passaged in Vero cells and collected 
24–36 h after infection. Supernatant was overlaid onto a 20% sucrose gradient and 
concentrated at 30,000 r.p.m. for 2 h using a SW 32 Ti rotor (Beckman Coulter). 
Viral pellets were resuspended in PBS and stored at − 80 °C. Virus titre was 
determined by focus-forming or plaque assay.

MAb generation. Six-week-old Irf3–/– C57BL/6 female mice were infected and 
boosted with 105 focus-forming units (FFU) of SINV-EEEV and given a final 
intravenous boost with 106 FFU of SINV-EEEV three days before fusion with 
myeloma cells. Hybridomas that secreted antibodies reacting with SINV-EEEV-
infected BHK-21 cells were identified by flow cytometry and cloned by limiting 
dilution. MAbs were isotyped by Pierce ELISA (Thermo Fisher Scientific) and 
hybridomas were sent for commercial preparation and purification by protein A 
affinity chromatography (Bio X Cell). All mAbs were screened initially  
with a single end point neutralization assay using neat hybridoma supernatant  
(∼ 10 µ g ml−1), which was incubated with 102 FFU of SINV-EEEV for 1 h at 37 °C. 
Virus–mAb complexes were added to Vero cell monolayers in 96-well plates.  

After 90 min, cells were overlaid with 1% (w/v) methylcellulose in MEM 
supplemented with 2% FBS. Plates were collected 18 h later and fixed with 1% 
paraformaldehyde in PBS. The plates were incubated sequentially with murine 
mAb EEEV-10 and horseradish peroxidase-conjugated goat anti-mouse IgG in 
PBS supplemented with 0.1% saponin and 0.1% BSA. SINV-EEEV-infected foci 
were visualized using TrueBlue peroxidase substrate (KPL) and quantitated on an 
ImmunoSpot 5.0.37 Macroanalyzer (Cellular Technologies). Nonlinear regression 
analysis was performed after comparison to wells infected with SINV-EEEV in the 
absence of mAb.

Protein expression and purification. Residues 1–338 encoding the E2 gene of 
EEEV (strain FL93-939) were cloned into the pET-28a Escherichia coli expression 
vector and transformed into BL21(DE3) chemically competent cells (Thermo 
Fisher Scientific). Cells were grown at 37 °C in lysogeny broth to an A600 of 0.9 and 
then induced with 1 mM isopropyl-β -D-thiogalactopyranoside for 4 h. Bacteria 
were collected, resuspended in 50 mM Tris-HCl, 1 mM EDTA, 0.01% NaN3, 1 mM 
DTT, 25% sucrose (TENDS) buffer, and lysed in 50 mM Tris-HCl, 1 mM EDTA, 
0.01% NaN3, 1 mM DTT, 200 mM sodium chloride, 1% sodium deoxycholate and 
1% Triton X-100. Inclusion bodies were obtained after centrifugation (6,000g for 
30 min) and then washed in TENDS buffer supplemented with 100 mM NaCl 
and 0.5% Triton X-100. After a final wash in the same buffer without 0.5% Triton 
X-100, ~200 mg of inclusion bodies were denatured in 100 mM Tris-HCl, 6 M 
guanidinium chloride and 20 mM β -mercaptoethanol for 1 h. Solubilized protein 
was refolded overnight at 4 °C into a buffer containing 400 mM L-arginine, 100 mM 
Tris-HCl, 5 mM reduced glutathione, 0.5 mM oxidized glutathione, 10 mM  
EDTA and 200 mM phenylmethylsulphonyl fluoride. Refolded protein was 
concentrated using a 10 kDa molecular weight cut-off stirred cell concentrator 
(EMD Millipore) and purified by HiLoad 16/600 Superdex 75 pg size exclusion 
chromatography (GE Healthcare).

ELISA. Recombinant E2 glycoprotein (5 µ g ml−1) was immobilized onto Maxisorp 
ELISA plates (Thermo Fisher Scientific) overnight in sodium bicarbonate buffer, 
pH 9.3. Plates were washed three times with PBS, 0.05% Tween 20 and blocked 
with 5% BSA/PBS for 1 h at 37 °C. Anti-EEEV mAbs were diluted in 2% BSA in 
PBS and incubated for 1 h at room temperature. After serial washing, horseradish 
peroxidase-conjugated goat anti-mouse IgG (H +  L; 1:2,000 dilution; Jackson 
ImmunoResearch) was added and incubated for 1 h at room temperature. After 
washing, plates were developed with Dako 3,3′ ,5,5′ - tetramethylbenzidine substrate 
(Agilent); the reaction was stopped with 2 N H2SO4 and absorbance was read 
at 450 nm with a TriStar Microplate Reader (Berthold Technologies). For virus 
capture ELISA, ultracentrifuged SINV-EEEV virions were immobilized directly 
onto Maxisorp ELISA plates for 1 h at room temperature. Virus ELISAs were 
performed similarly, but Tween 20 detergent was omitted from the wash buffer.

Expression of WT or mutant structural proteins. Alanine-scanning mutagenesis 
was performed on EEEV E2 residues 1–360 with alanine residues mutated 
into serine. EEEV E2 alanine mutants that exhibited a partial loss-of-binding 
phenotype (residues 56–62, 64, 68, 73–79, 81, 192, 180–182, 212–213 and 215) 
were substituted with arginine residues. For residues with positive charges (K56 
and K74), a glutamic acid substitution was made. Plasmids containing the codon-
optimized EEEV, VEEV or WEEV pE2-6K-E1 structural proteins or EEEV E2 
alanine mutants were transfected in HEK-293T cells using Lipofectamine 3000 
(Thermo Fisher Scientific). Sixteen hours post-transfection, cells were washed with 
PBS and fixed with the Foxp3/Transcription Factor Staining Buffer Set (Thermo 
Fisher Scientific). Cells were washed twice with PBS followed by another wash 
with permeabilization buffer (Thermo Fisher Scientific). Cells were stained with 
anti-EEEV mAbs at 1 µ g ml−1 in permeabilization buffer and incubated for 1 h at 
4 °C. For cross-reactivity studies, anti-VEEV mAb 3B4C-420 and anti-WEEV mAb 
(WEEV-23; S.K.A. and M.S.D., unpublished results) were used as positive controls. 
After two washes with permeabilization buffer, antibodies were detected with 
Alexa Fluor 647 conjugated goat anti-mouse IgG (1:2,000 dilution; Thermo Fisher 
Scientific). After two washes, cells were resuspended in 100 µ l of permeabilization 
buffer and analysed on a MACSQuant Analyzer (Miltenyi Biotec). Using previously 
published criteria, alanine mutants with < 25% reactivity compared to WT that 
exhibited > 70% reactivity to a polyclonal anti-EEEV mAb cocktail were deemed as 
key binding residues19.

Generation of virus escape mutants. To generate neutralization escape mutants, 
SINV-EEEV (1.2 ×  105 FFU) were incubated with 1 µ g ml−1 of EEEV mAbs for 1 h at 
37 °C. The virus–mAb complexes were added to Vero cells. One day post-infection, 
half of the virus supernatant was incubated with 1 µ g ml−1 of EEEV mAbs for 
1 h at 37 °C and added to new Vero cells. The remaining half of the supernatant 
was frozen at − 80 °C. This process was repeated for 9 days. Escape mutants were 
confirmed by focus-forming neutralization assays. Viral RNA was isolated from 
bulk virus supernatant pools using a QIAamp Viral RNA Mini Kit (QIAGEN) and 
cDNA was generated with an Oligo(dT)20 primer using the SuperScript III Reverse 
Transcriptase kit (Thermo Fisher Scientific). Viral structural genes were amplified 
using the forward primer 5′ -ATGTGCGTCCTGGCCAATATCACGTTTCC-3′  
and the reverse primer 5′ -GAACAAAACTAGGGCAACCACTGCTGTAGC-3′ .  
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The amplified structural genes were sequenced using four primer sets. Escape 
mutations were introduced into pKR780-2-EEEV containing the codon-optimized 
pE2-6K-E1 genes of EEEV FL93-939, expressed in HEK-293T cells, stained with 
anti-EEEV mAbs and analysed by flow cytometry as described earlier.

Mapping of mutations onto the CHIKV p62-E1 crystal structure. Figures were 
prepared using the atomic coordinates of the CHIKV p62-E1 monomer (PDB 
3N41) and trimer (PDB 5ANY) using the PyMOL software (PyMOL Molecular 
Graphics System, version 1.7.4; Schrödinger).

Attachment inhibition assays. Vero cells were seeded at 3 ×  105 cells per well 
24 h before being assayed. Anti-EEEV mAbs, heparin (Sigma-Aldrich) and BSA 
(Sigma-Aldrich) were diluted to specified concentrations and incubated for 1 h 
at 37 °C with SINV-EEEV at a multiplicity of infection of 0.01. The virus–mAb 
complex was then chilled to 4 °C and added to pre-chilled Vero cells for 1 h at 4 °C. 
After six washes with chilled PBS, RNA was extracted using an RNeasy Mini Kit 
(QIAGEN). EEEV RNA levels were determined using a TaqMan RNA-to-CT 1-Step 
Kit (Thermo Fisher Scientific) and an E2-specific primer/probe set26. EEEV RNA 
levels were normalized against glyceraldehyde 3-phosphate dehydrogenase and the 
relative fold change was compared to cells treated with an isotype control mAb.

Pre/post-attachment and post-attachment neutralization assays. Pre/post-
attachment neutralization assays were performed by first incubating diluted 
anti-EEEV mAbs with 102 FFU of SINV-EEEV for 1 h at 37 °C. The virus–mAb 
complex was then added to Vero cells for 1.5 h at 37 °C. Cells were overlaid with 
1% (w/v) methylcellulose in MEM supplemented with 2% FBS. Post-attachment 
neutralization assays were performed by first incubating Vero cells with 102 FFU 
of SINV-EEEV for 1 h at 4 °C. Cells were washed extensively with cold DMEM to 
remove unbound virus. Diluted anti-EEEV mAbs were added to virus-adsorbed 
cells and incubated for 1 h at 4 °C. After a 15 min incubation at 37 °C to allow virus 
internalization, cells were overlaid with methylcellulose as previously described. 
Pre/post-attachment and post-attachment neutralization assays were processed 
similarly to the single end point neutralization assay described earlier.

Fusion inhibition assays. FFWO assays were performed by first allowing viral 
adsorption to BHK-21 cells (multiplicity of infection, 25) for 1 h at 4 °C. Unbound 
virus was removed by washing with chilled PBS. Diluted mAbs (50 µ g ml−1) were 
added to virus-adsorbed cells for 30 min at 4 °C. Cells were washed with chilled 
PBS. FFWO was induced by pulsing with fusion medium (Roswell Park Memorial 
Institute 1640, 10 mM HEPES, 0.2% BSA and 30 mM succinic acid, pH 5.5) for 
2 min at 37 °C. A non-fusion control was included using control media (Roswell 
Park Memorial Institute 1640, 10 mM HEPES, 0.2% BSA, pH 7.6). After the 
37 °C pulse, cells were washed twice with chilled PBS and incubated in DMEM 
supplemented with 5% FBS, 10 mM HEPES, 100 U ml−1 penicillin, 100 µ g ml−1 
streptomycin and 20 mM NH4Cl to prevent infection via endocytosis. Infection 
was allowed to proceed for 5 h and cells were detached and fixed with the Foxp3/
Transcription Factor Staining Buffer Set (Thermo Fisher Scientific). Cells were 
stained with human mAb EEEV-53 (L.E.W. and J.E.C, unpublished results) at  
1 µ g ml−1 in permeabilization buffer and incubated for 1 h at 4 °C. After two washes 
with permeabilization buffer, viral antigen was detected with Alexa Fluor 647 
conjugated goat anti-human IgG (1:2,000 dilution; Thermo Fisher Scientific). After 
two washes with permeabilization buffer, cells were resuspended in 100 µ l and 
analysed on a MACSQuant Analyzer.

Mouse protection studies. Five-week-old female CD-1 mice (Charles River) 
were administered 100 µ g of anti-EEEV mAb or isotype control mAb via an 
intraperitoneal route 24 h pre- or post-challenge. For combined antibody testing, 
100 μ g of each antibody was given as described earlier. Mice were challenged with 
EEEV FL93-939 WT or a nanoluciferase-expressing version30 via a subcutaneous 
(103 PFU) or an aerosol route (50–100 LD50). Aerosol exposures were performed as 
previously described49 using the AeroMP exposure system (Biaera Technologies) 
inside a biological safety cabinet class III. Infected mice were observed at 24 h 
intervals through 21 days post-infection; at each time, mice were weighed and 
mortality was assessed. At 5 days post-challenge, some mice were injected with 
10 µ g Nano-Glo substrate (Promega) subcutaneously and imaged using the in 
vivo imaging system (IVIS) IVIS SpectrumCT instrument (PerkinElmer) on the 
auto-exposure setting at 4 min post-substrate injection. The total flux (photons s−1) 
in the head region, taken as a measure of brain replication, was calculated for 
animals in each treatment group based on the radiance (photons s cm2 sr−1) and 
was quantified using the Living Image Software (PerkinElmer). The dynamic range 
of the IVIS imager signal from the heads of uninfected mice to highly infected 
mice was approximately 100-fold (~1–2 ×  105 photons s−1 to ~1–2 ×  107 photons s−1, 
respectively). Sample sizes were estimated to determine a 50% reduction in 
lethality after mAb treatment. Blinding and randomization were not performed.

Statistical analysis. Statistical significance was determined using Prism version 
7.0 (GraphPad Software). Attachment and fusion inhibition assays were analysed 
using a one-way analysis of variance (ANOVA) test with Dunnett’s post-test. In 
vivo survival experiments were analysed using a one-way log rank test with a 

Bonferroni correction. Differences in IVIS signal were analysed using a one-way 
ANOVA test with Dunnett’s post-test.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting the findings of this study are available 
within the paper and its Supplementary Information. The Supplementary Tables 
provide data on the newly generated mAbs and mutagenesis (alanine and arginine) 
mapping of the mAb binding sites on EEEV E2 protein.
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