Letter | Published:

Epstein–Barr virus BORF2 inhibits cellular APOBEC3B to preserve viral genome integrity

Abstract

The apolipoprotein B messenger RNA editing enzyme, catalytic polypeptide-like (APOBEC) family of single-stranded DNA (ssDNA) cytosine deaminases provides innate immunity against virus and transposon replication1,2,3,4. A well-studied mechanism is APOBEC3G restriction of human immunodeficiency virus type 1, which is counteracted by a virus-encoded degradation mechanism1,2,3,4. Accordingly, most work has focused on retroviruses with obligate ssDNA replication intermediates and it is unclear whether large double-stranded DNA (dsDNA) viruses may be similarly susceptible to restriction. Here, we show that the large dsDNA herpesvirus Epstein–Barr virus (EBV), which is the causative agent of infectious mononucleosis and multiple cancers5, utilizes a two-pronged approach to counteract restriction by APOBEC3B. Proteomics studies and immunoprecipitation experiments showed that the ribonucleotide reductase large subunit of EBV, BORF26,7, binds APOBEC3B. Mutagenesis mapped the interaction to the APOBEC3B catalytic domain, and biochemical studies demonstrated that BORF2 stoichiometrically inhibits APOBEC3B DNA cytosine deaminase activity. BORF2 also caused a dramatic relocalization of nuclear APOBEC3B to perinuclear bodies. On lytic reactivation, BORF2-null viruses were susceptible to APOBEC3B-mediated deamination as evidenced by lower viral titres, lower infectivity and hypermutation. The Kaposi’s sarcoma-associated herpesvirus homologue, ORF61, also bound APOBEC3B and mediated relocalization. These data support a model where the genomic integrity of human γ-herpesviruses is maintained by active neutralization of the antiviral enzyme APOBEC3B.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The data that support the findings of this study are available on request from the corresponding authors.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Simon, V., Bloch, N. & Landau, N. R. Intrinsic host restrictions to HIV-1 and mechanisms of viral escape. Nat. Immunol. 16, 546–553 (2015).

  2. 2.

    Harris, R. S. & Dudley, J. P. APOBECs and virus restriction. Virology 479–480, 131–145 (2015).

  3. 3.

    Malim, M. H. & Emerman, M. HIV-1 accessory proteins: ensuring viral survival in a hostile environment. Cell Host Microbe 3, 388–398 (2008).

  4. 4.

    Yang, B., Li, X., Lei, L. & Chen, J. APOBEC: from mutator to editor. J. Genet. Genomics 44, 423–437 (2017).

  5. 5.

    Rickinson, A. & Kieff, E. in Fields Virology (eds Fields, B. N. et al.) (Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, 2007).

  6. 6.

    Whitehurst, C. B. et al. The Epstein–Barr virus (EBV) deubiquitinating enzyme BPLF1 reduces EBV ribonucleotide reductase activity. J. Virol. 83, 4345–4353 (2009).

  7. 7.

    Lembo, D. & Brune, W. Tinkering with a viral ribonucleotide reductase. Trends Biochem. Sci. 34, 25–32 (2009).

  8. 8.

    Kraus, R. J. et al. Hypoxia-inducible factor-1α plays roles in Epstein–Barr virus’s natural life cycle and tumorigenesis by inducing lytic infection through direct binding to the immediate-early BZLF1 gene promoter. PLoS Pathog. 13, e1006404 (2017).

  9. 9.

    Hagemeier, S. R., Barlow, E. A., Kleman, A. A. & Kenney, S. C. The Epstein–Barr virus BRRF1 protein, Na, induces lytic infection in a TRAF2- and p53-dependent manner. J. Virol. 85, 4318–4329 (2011).

  10. 10.

    Verma, D., Thompson, J. & Swaminathan, S. Spironolactone blocks Epstein–Barr virus production by inhibiting EBV SM protein function. Proc. Natl Acad. Sci. USA 113, 3609–3614 (2016).

  11. 11.

    LaRue, R. S. et al. Guidelines for naming nonprimate APOBEC3 genes and proteins. J. Virol. 83, 494–497 (2009).

  12. 12.

    Shi, K. et al. Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B. Nat. Struct. Mol. Biol. 24, 131–139 (2017).

  13. 13.

    Starrett, G. J. et al. The DNA cytosine deaminase APOBEC3H haplotype I likely contributes to breast and lung cancer mutagenesis. Nat. Commun. 7, 12918 (2016).

  14. 14.

    Takada, K. Cross-linking of cell surface immunoglobulins induces Epstein–Barr virus in Burkitt lymphoma lines. Int. J. Cancer 33, 27–32 (1984).

  15. 15.

    Borza, C. M. & Hutt-Fletcher, L. M. Alternate replication in B cells and epithelial cells switches tropism of Epstein–Barr virus. Nat. Med. 8, 594–599 (2002).

  16. 16.

    Bogerd, H. P. et al. Cellular inhibitors of long interspersed element 1 and Alu retrotransposition. Proc. Natl Acad. Sci. USA 103, 8780–8785 (2006).

  17. 17.

    Burns, M. B. et al. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature 494, 366–370 (2013).

  18. 18.

    Tsai, M. H. et al. Spontaneous lytic replication and epitheliotropism define an Epstein–Barr virus strain found in carcinomas. Cell Rep. 5, 458–470 (2013).

  19. 19.

    Molesworth, S. J., Lake, C. M., Borza, C. M., Turk, S. M. & Hutt-Fletcher, L. M. Epstein–Barr virus gH is essential for penetration of B cells but also plays a role in attachment of virus to epithelial cells. J. Virol. 74, 6324–6332 (2000).

  20. 20.

    Suspène, R., Henry, M., Guillot, S., Wain-Hobson, S. & Vartanian, J. P. Recovery of APOBEC3-edited human immunodeficiency virus G->A hypermutants by differential DNA denaturation PCR. J. Gen. Virol. 86, 125–129 (2005).

  21. 21.

    Stenglein, M. D., Burns, M. B., Li, M., Lengyel, J. & Harris, R. S. APOBEC3 proteins mediate the clearance of foreign DNA from human cells. Nat. Struct. Mol. Biol. 17, 222–229 (2010).

  22. 22.

    Géoui, T., Buisson, M., Tarbouriech, N. & Burmeister, W. P. New insights on the role of the gamma-herpesvirus uracil-DNA glycosylase leucine loop revealed by the structure of the Epstein–Barr virus enzyme in complex with an inhibitor protein. J. Mol. Biol. 366, 117–131 (2007).

  23. 23.

    Mol, C. D. et al. Crystal structure of human uracil-DNA glycosylase in complex with a protein inhibitor: protein mimicry of DNA. Cell 82, 701–708 (1995).

  24. 24.

    Robbiani, D. F. & Nussenzweig, M. C. Chromosome translocation, B cell lymphoma, and activation-induced cytidine deaminase. Annu. Rev. Pathol. 8, 79–103 (2013).

  25. 25.

    Di Noia, J. M. & Neuberger, M. S. Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem. 76, 1–22 (2007).

  26. 26.

    Kidd, J. M., Newman, T. L., Tuzun, E., Kaul, R. & Eichler, E. E. Population stratification of a common APOBEC gene deletion polymorphism. PLoS Genet. 3, e63 (2007).

  27. 27.

    Suspène, R. et al. Genetic editing of herpes simplex virus 1 and Epstein–Barr herpesvirus genomes by human APOBEC3 cytidine deaminases in culture and in vivo. J. Virol. 85, 7594–7602 (2011).

  28. 28.

    Sanjuán, R. & Domingo-Calap, P. Mechanisms of viral mutation. Cell. Mol. Life Sci. 73, 4433–4448 (2016).

  29. 29.

    Janini, M., Rogers, M., Birx, D. R. & McCutchan, F. E. Human immunodeficiency virus type 1 DNA sequences genetically damaged by hypermutation are often abundant in patient peripheral blood mononuclear cells and may be generated during near-simultaneous infection and activation of CD4+ T cells. J. Virol. 75, 7973–7986 (2001).

  30. 30.

    Kim, E. Y. et al. Human APOBEC3 induced mutation of human immunodeficiency virus type-1 contributes to adaptation and evolution in natural infection. PLoS Pathog. 10, e1004281 (2014).

  31. 31.

    Hultquist, J. F. et al. Human and rhesus APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H demonstrate a conserved capacity to restrict Vif-deficient HIV-1. J. Virol. 85, 11220–11234 (2011).

  32. 32.

    Stenglein, M. D. & Harris, R. S. APOBEC3B and APOBEC3F inhibit L1 retrotransposition by a DNA deamination-independent mechanism. J. Biol. Chem. 281, 16837–16841 (2006).

  33. 33.

    LaRue, R. S., Lengyel, J., Jónsson, S. R., Andrésdóttir, V. & Harris, R. S. Lentiviral Vif degrades the APOBEC3Z3/APOBEC3H protein of its mammalian host and is capable of cross-species activity. J. Virol. 84, 8193–8201 (2010).

  34. 34.

    Lackey, L., Law, E. K., Brown, W. L. & Harris, R. S. Subcellular localization of the APOBEC3 proteins during mitosis and implications for genomic DNA deamination. Cell Cycle 12, 762–772 (2013).

  35. 35.

    Leonard, B. et al. APOBEC3B upregulation and genomic mutation patterns in serous ovarian carcinoma. Cancer Res. 73, 7222–7231 (2013).

  36. 36.

    Leonard, B. et al. The PKC/NF-κB signaling pathway induces APOBEC3B expression in multiple human cancers. Cancer Res. 75, 4538–4547 (2015).

  37. 37.

    Law, E. K. et al. The DNA cytosine deaminase APOBEC3B promotes tamoxifen resistance in ER-positive breast cancer. Sci. Adv. 2, e1601737 (2016).

  38. 38.

    Bryant, D. M. et al. A molecular network for de novo generation of the apical surface and lumen. Nat. Cell Biol. 12, 1035–1045 (2010).

  39. 39.

    Salsman, J., Zimmerman, N., Chen, T., Domagala, M. & Frappier, L. Genome-wide screen of three herpesviruses for protein subcellular localization and alteration of PML nuclear bodies. PLoS Pathog. 4, e1000100 (2008).

  40. 40.

    Jäger, S. et al. Vif hijacks CBF-β to degrade APOBEC3G and promote HIV-1 infection. Nature 481, 371–375 (2011).

  41. 41.

    Salamango, D. J. & Johnson, M. C. Characterizing the murine leukemia virus envelope glycoprotein membrane-spanning domain for its roles in interface alignment and fusogenicity. J. Virol. 89, 12492–12500 (2015).

  42. 42.

    Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).

  43. 43.

    Di Noia, J. & Neuberger, M. S. Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature 419, 43–48 (2002).

  44. 44.

    Albin, J. S., Hache, G., Hultquist, J. F., Brown, W. L. & Harris, R. S. Long-term restriction by APOBEC3F selects human immunodeficiency virus type 1 variants with restored Vif function. J. Virol. 84, 10209–10219 (2010).

  45. 45.

    Jagannathan, M. et al. A role for USP7 in DNA replication. Mol. Cell. Biol. 34, 132–145 (2014).

  46. 46.

    Davis, Z. H. et al. Global mapping of herpesvirus-host protein complexes reveals a transcription strategy for late genes. Mol. Cell 57, 349–360 (2015).

  47. 47.

    Shimizu, N., Yoshiyama, H. & Takada, K. Clonal propagation of Epstein–Barr virus (EBV) recombinants in EBV-negative Akata cells. J. Virol. 70, 7260–7263 (1996).

  48. 48.

    Ni, Z., Olsen, J. B., Emili, A. & Greenblatt, J. F. Identification of mammalian protein complexes by lentiviral-based affinity purification and mass spectrometry. Methods Mol. Biol. 781, 31–45 (2011).

  49. 49.

    Liu, G. et al. ProHits: integrated software for mass spectrometry-based interaction proteomics. Nat. Biotechnol. 28, 1015–1017 (2010).

  50. 50.

    Refsland, E. W. et al. Quantitative profiling of the full APOBEC3 mRNA repertoire in lymphocytes and tissues: implications for HIV-1 restriction. Nucleic Acids Res. 38, 4274–4284 (2010).

  51. 51.

    Shi, K., Carpenter, M. A., Kurahashi, K., Harris, R. S. & Aihara, H. Crystal structure of the DNA deaminase APOBEC3B catalytic domain. J. Biol. Chem. 290, 28120–28130 (2015).

  52. 52.

    Shaban, N. M. et al. The antiviral and cancer genomic DNA deaminase APOBEC3H is regulated by an RNA-mediated dimerization mechanism. Mol. Cell 69, 75–86.e79 (2018).

  53. 53.

    Cui, X. A., Zhang, H. & Palazzo, A. F. p180 promotes the ribosome-independent localization of a subset of mRNA to the endoplasmic reticulum. PLoS Biol. 10, e1001336 (2012).

  54. 54.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

  55. 55.

    McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

  56. 56.

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

  57. 57.

    Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).

  58. 58.

    Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).

  59. 59.

    Borozan, I., Zapatka, M., Frappier, L. & Ferretti, V. Analysis of Epstein–Barr virus genomes and expression profiles in gastric adenocarcinoma. J. Virol. 92, pii: e01239-17 (2018).

  60. 60.

    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

  61. 61.

    Verhalen, B., Starrett, G. J., Harris, R. S. & Jiang, M. Functional upregulation of the DNA cytosine deaminase APOBEC3B by polyomaviruses. J. Virol. 90, 6379–6386 (2016).

  62. 62.

    Ebrahimi, D., Anwar, F. & Davenport, M. P. APOBEC3 has not left an evolutionary footprint on the HIV-1 genome. J. Virol. 85, 9139–9146 (2011).

Download references

Acknowledgements

We thank B. Anderson for technical advice and RT–qPCR data; Y.-F. Chiu for sharing BAC EBV B95.8; H.-J. Delecluse for M81-transformed B cells; K. Hogquist and S. Dunmire for providing the Akata cells; T. Ikeda and C. Richards for cell culture assistance; M. Sanders and staff at the University of Minnesota Imaging Center for assistance with fluorescence microscopy and live cell imaging; A. Serebrenik for the gRNA construct targeting UNG2; G. Starrett for technical programming advice; and R. Khanna, S. Rice, S. Simon, and P. Southern for thoughtful comments. This work was supported by NCI R21-CA206309 (R.S.H.), the University of Minnesota (College of Biological Sciences, Academic Health Center, and Masonic Cancer Center to R.S.H.), and Canadian Institutes of Health Research grant 153014 (to L.F.). National Institutes of Health training grants provided salary support for A.Z.C. (F30 CA200432 and T32 GM008244) and M.C.J. (T32 CA009138). Salary support for J.L.M. was provided by a National Science Foundation Graduate Research Fellowship. J.Y.M. was funded by Secretaría Nacional de Educación Superior, Ciencia, Tecnología e Innovación. L.F. is a tier 1 Canada Research Chair in Molecular Virology. R.S.H. is the Margaret Harvey Schering Land Grant Chair for Cancer Research, a Distinguished University McKnight Professor, and an Investigator of the Howard Hughes Medical Institute.

Author information

A.Z.C., J.Y.-M., L.F. and R.S.H. conceived and designed the studies. A.Z.C. and J.Y-M. performed the bulk of the experimental work. N.M.-S., E.M. and J.G. carried out the AP-MS analyses. M.C.J., M.A.C., J.L.M., N.M.Sh. and W.L.B. provided technical training and advice. J.L.M. helped validate the BORF2-A3B interaction and M.A.C. performed the UDG experiments. A.Z.C., I.B., M.C.J. and D.E. conducted the bioinformatics analyses. A.Z.C., J.Y.-M., L.F. and R.S.H. drafted the manuscript, and all authors contributed to revisions.

Competing interests

R.S.H. is a co-founder, shareholder, and consultant of ApoGen Biotechnologies Inc. The other authors declare no competing interests.

Correspondence to Lori Frappier or Reuben S. Harris.

Supplementary information

Supplementary Information

Supplementary Figures 1–14, Raw Images and Supplementary Video legends.

Reporting Summary

Supplementary Video 1

3D-reconstruction of z-stacks show A3B–BORF2 aggregates colocalizing within the endoplasmic reticulum.

Supplementary Video 2

z-series of reactivated AGS-EBV cells show BORF2 colocalization within the endoplasmic reticulum.

Supplementary Video 3

Effect of BORF2 induction on pre-existing A3B in U2OS cells.

Supplementary Video 4

Effect of BORF2 on A3B induction in U2OS cells.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: EBV BORF2 interacts with cellular A3B.
Fig. 2: EBV BORF2 inhibits A3B catalytic activity specifically.
Fig. 3: BORF2 relocalizes A3B from the nuclear compartment to the endoplasmic reticulum.
Fig. 4: BORF2 functions to preserve EBV genome integrity from A3B.