Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The role of the microbiota in infectious diseases

Abstract

The human body is colonized by a diverse community of microorganisms collectively referred to as the microbiota. Here, we describe how the human microbiota influences susceptibility to infectious diseases using examples from the respiratory, gastrointestinal and female reproductive tract. We will discuss how interactions between the host, the indigenous microbiota and non-native microorganisms, including bacteria, viruses and fungi, can alter the outcome of infections. This Review Article will highlight the complex mechanisms by which the microbiota mediates colonization resistance, both directly and indirectly, against infectious agents. Strategies for the therapeutic modulation of the microbiota to prevent or treat infectious diseases will be discussed, and we will review potential therapies that directly target the microbiota, including prebiotics, probiotics, synbiotics and faecal microbiota transplantation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Disruptions to the microbiota alter mechanisms of colonization resistance and affect infection outcomes.
Fig. 2: Example of how the indigenous microbiota influences infectious disease susceptibility in the female genital tract.
Fig. 3: Hypothesized mechanisms for therapies preventing the colonization or clearance of pathogens.

References

  1. 1.

    Aagaard, K. et al. The placenta harbors a unique microbiome. Sci. Transl. Med. 6, 237ra265 (2014).

    Google Scholar 

  2. 2.

    Wampach, L. et al. Colonization and succession within the human gut microbiome by archaea, bacteria, and microeukaryotes during the first year of life. Front. Microbiol. 8, 738 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Nkamga, V. D., Henrissat, B. & Drancourt, M. Archaea: essential inhabitants of the human digestive microbiota. Hum. Microbiome J. 3, 1–8 (2017).

    Article  Google Scholar 

  4. 4.

    Parfrey, L. W., Walters, W. A. & Knight, R. Microbial eukaryotes in the human microbiome: ecology, evolution, and future directions. Front. Microbiol. 2, 153 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Reynolds, L. A. & Finlay, B. B. Early life factors that affect allergy development. Nat. Rev. Immunol. 17, 518–528 (2017).

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Jandhyala, S. M. et al. Role of the normal gut microbiota. World J. Gastroenterol. 21, 8787–8803 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Su, C. et al. Helminth-induced alterations of the gut microbiota exacerbate bacterial colitis. Mucosal Immunol. 11, 144–157 (2018).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Lawley, T. D. & Walker, A. W. Intestinal colonization resistance. Immunology 138, 1–11 (2013).

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Koch, R. Die Ätiologie der milzbrand-krankheit, begründet auf die entwicklungsgeschichte des Bacillus anthracis. Cohns Beitr. Biol. Pflanzen 2, 277–310 (1876).

    Google Scholar 

  11. 11.

    Falkow, S. Molecular Koch’s postulates applied to bacterial pathogenicity—a personal recollection 15 years later. Nat. Rev. Microbiol. 2, 67–72 (2004).

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Young, V. B. The role of the microbiome in human health and disease: an introduction for clinicians. Br. Med. J. 356, j831 (2017).

    Article  Google Scholar 

  13. 13.

    Buffie, C. G. & Pamer, E. G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 13, 790–801 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Walter, J., Maldonado-Gómez, M. X. & Martínez, I. To engraft or not to engraft: an ecological framework for gut microbiome modulation with live microbes. Curr. Opin. Biotechnol. 49, 129–139 (2018).

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. M. & Relman, D. A. The application of ecological theory toward an understanding of the human microbiome. Science 336, 1255–1262 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Shea, K. & Chesson, P. Community ecology theory as a framework for biological invasions. Trends Ecol. Evol. 17, 170–176 (2002).

    Article  Google Scholar 

  18. 18.

    Maldonado-Gomez, M. X. et al. Stable engraftment of Bifidobacterium longum AH1206 in the human gut depends on individualized features of the resident microbiome. Cell Host Microbe 20, 515–526 (2016).

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Theriot, C. M. et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat. Commun. 5, 3114 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Jernberg, C., Lofmark, S., Edlund, C. & Jansson, J. K. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 1, 56–66 (2007).

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Buffie, C. G. et al. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect. Immun. 80, 62–73 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Jenior, M. L., Leslie, J. L., Young, V. B. & Schloss, P. D. Clostridium difficile colonizes alternative nutrient niches during infection across distinct murine gut microbiomes. mSystems 2, e00063-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Fleming-Davies, A. et al. In Women in Mathematical Biology (eds Layton, A. & Miller, L.) 137–161 (Springer, New York, 2017).

  24. 24.

    Theriot, C. M. & Young, V. B. Interactions between the gastrointestinal microbiome and Clostridium difficile. Annu. Rev. Microbiol. 69, 445–461 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Theriot, C. M., Bowman, A. A. & Young, V. B. Antibiotic-induced alterations of the gut microbiota alter secondary bile acid production and allow for Clostridium difficile spore germination and outgrowth in the large intestine. mSphere 1, e00045-15 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Thanissery, R., Winston, J. A. & Theriot, C. M. Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acids. Anaerobe 45, 86–100 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Kato, K., Lillehoj, E. P., Lu, W. & Kim, K. C. MUC1: the first respiratory mucin with an anti-inflammatory function. J. Clin. Med. 6, 110 (2017).

    Article  PubMed Central  Google Scholar 

  28. 28.

    Andersch-Bjorkman, Y., Thomsson, K. A., Holmen Larsson, J. M., Ekerhovd, E. & Hansson, G. C. Large scale identification of proteins, mucins, and their O-glycosylation in the endocervical mucus during the menstrual cycle. Mol. Cell. Proteomics 6, 708–716 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Kim, K. C. Role of epithelial mucins during airway infection. Pulm. Pharmacol. Ther. 25, 415–419 (2012).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Lesuffleur, T., Zweibaum, A. & Real, F. X. Mucins in normal and neoplastic human gastrointestinal tissues. Crit. Rev. Oncol. Hematol. 17, 153–180 (1994).

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Specian, R. D. & Neutra, M. R. Regulation of intestinal goblet cell secretion. I. Role of parasympathetic stimulation. Am. J. Physiol. 242, G370–G379 (1982).

    CAS  PubMed  Google Scholar 

  32. 32.

    Van der Sluis, M. et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131, 117–129 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Schroeder, B. O. et al. Bifidobacteria or fiber protects against diet-induced microbiota-mediated colonic mucus feterioration. Cell Host Microbe 23, 27–40 (2018).

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Hill, D. R. et al. Bacterial colonization stimulates a complex physiological response in the immature human intestinal epithelium. eLife 6, e29132 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Engevik, M. A. et al. Human Clostridium difficile infection: altered mucus production and composition. Am. J. Physiol. Gastrointest. Liver Physiol. 308, G510–G524 (2015).

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353.e1321 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Ménard, S., Cerf-Bensussan, N. & Heyman, M. Multiple facets of intestinal permeability and epithelial handling of dietary antigens. Mucosal Immunol. 3, 247–259 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    König, J. et al. Human intestinal barrier function in health and disease. Clin. Transl. Gastroenterol. 7, e196 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Zeissig, S. et al. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut 56, 61–72 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Fasano, A. et al. Vibrio cholerae produces a second enterotoxin, which affects intestinal tight junctions. Proc. Natl Acad. Sci. USA 88, 5242–5246 (1991).

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Nusrat, A. et al. Clostridium difficile toxins disrupt epithelial barrier function by altering membrane microdomain localization of tight junction proteins. Infect. Immun. 69, 1329–1336 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Leslie, J. L. et al. Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infect. Immun. 83, 138–145 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Hering, N. A. et al. Yersinia enterocolitica induces epithelial barrier dysfunction through regional tight junction changes in colonic HT-29/B6 cell monolayers. Lab. Invest. 91, 310–324 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Short, K. R. et al. Influenza virus damages the alveolar barrier by disrupting epithelial cell tight junctions. Eur. Respir. J. 47, 954–966 (2016).

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    De La Serre, C. B. et al. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G440–G448 (2010).

    Article  CAS  Google Scholar 

  46. 46.

    Cani, P. D. et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50, 2374–2383 (2007).

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Ahmad, R., Rah, B., Bastola, D., Dhawan, P. & Singh, A. B. Obesity-induces organ and tissue specific tight junction restructuring and barrier deregulation by claudin switching. Sci. Rep. 7, 5125 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Zhang, L. J. & Gallo, R. L. Antimicrobial peptides. Curr. Biol. 26, R14–R19 (2016).

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Jiang, Z. et al. Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α-helical cationic antimicrobial peptides. Biopolymers 90, 369–383 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Wang, Z. & Wang, G. APD: the antimicrobial peptide database. Nucleic Acids Res. 32, D590–D592 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Muytjens, C. M. J., Yu, Y. & Diamandis, E. P. Discovery of antimicrobial peptides in cervical-vaginal fluid from healthy nonpregnant women via an integrated proteome and peptidome analysis. Proteomics 17, 1600461 (2017).

    Article  CAS  Google Scholar 

  52. 52.

    Hiemstra, P. S., Amatngalim, G. D., van der Does, A. M. & Taube, C. Antimicrobial peptides and innate lung defenses: role in infectious and noninfectious lung diseases and therapeutic applications. Chest 149, 545–551 (2016).

    Article  PubMed  Google Scholar 

  53. 53.

    Natividad, J. M. et al. Differential induction of antimicrobial REGIII by the intestinal microbiota and Bifidobacterium breve NCC2950. Appl. Environ. Microbiol. 79, 7745–7754 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Wong, J. M., de Souza, R., Kendall, C. W., Emam, A. & Jenkins, D. J. Colonic health: fermentation and short chain fatty acids. J. Clin. Gastroenterol. 40, 235–243 (2006).

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Zhao, Y. et al. GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3. Mucosal Immunol. 11, 752–762 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    McHan, F. & Shotts, E. B. Effect of short-chain fatty acids on the growth of Salmonella typhimurium in an in vitro system. Avian Dis. 37, 396–398 (1993).

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Horswill, A. R., Dudding, A. R. & Escalante-Semerena, J. C. Studies of propionate toxicity in Salmonella enterica identify 2-methylcitrate as a potent inhibitor of cell growth. J. Biol. Chem. 276, 19094–19101 (2001).

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Jacobson, A. et al. A gut commensal-produced metabolite mediates colonization resistance to Salmonella infection. Cell Host Microbe 24, 296–307 (2018).

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Ricke, S. C. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult. Sci. 82, 632–639 (2003).

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Hung, C. C. et al. The intestinal fatty acid propionate inhibits Salmonella invasion through the post-translational control of HilD. Mol. Microbiol. 87, 1045–1060 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Gantois, I. et al. Butyrate specifically down-regulates Salmonella pathogenicity island 1 gene expression. Appl. Environ. Microbiol. 72, 946–949 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Hryckowian, A. J. et al. Microbiota-accessible carbohydrates suppress Clostridium difficile infection in a murine model. Nat. Microbiol. 3, 662–669 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Benveniste, J., Lespinats, G. & Salomon, J. Serum and secretory IgA in axenic and holoxenic mice. J. Immunol. 107, 1656–1662 (1971).

    CAS  PubMed  Google Scholar 

  64. 64.

    Kawamoto, S. et al. The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut. Science 336, 485–489 (2012).

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Kubinak, J. L. et al. MyD88 signaling in T cells directs IgA-mediated control of the microbiota to promote health. Cell Host Microbe 17, 153–163 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Lecuyer, E. et al. Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. Immunity 40, 608–620 (2014).

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Flannigan, K. L. et al. IL-17A-mediated neutrophil recruitment limits expansion of segmented filamentous bacteria. Mucosal Immunol. 10, 673–684 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Robak, O. H. et al. Antibiotic treatment-induced secondary IgA deficiency enhances susceptibility to Pseudomonas aeruginosa pneumonia. J. Clin. Invest. 128, 3535–3545 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Blander, J. M., Longman, R. S., Iliev, I. D., Sonnenberg, G. F. & Artis, D. Regulation of inflammation by microbiota interactions with the host. Nat. Immunol. 18, 851–860 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Sonnenburg, J. L. & Backhed, F. Diet–microbiota interactions as moderators of human metabolism. Nature 535, 56–64 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Verdu, E. F., Galipeau, H. J. & Jabri, B. Novel players in coeliac disease pathogenesis: role of the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 12, 497–506 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Bercik, P., Verdu, E. F. & Collins, S. M. Is irritable bowel syndrome a low-grade inflammatory bowel disease? Gastroenterol. Clin. North Am. 34, 235–245 (2005).

    Article  PubMed  Google Scholar 

  73. 73.

    Martin, R. et al. Faecalibacterium prausnitzii prevents physiological damages in a chronic low-grade inflammation murine model. BMC Microbiol. 15, 67 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Zacho, J., Benfield, T., Tybjaerg-Hansen, A. & Nordestgaard, B. G. Increased baseline C-reactive protein concentrations are associated with increased risk of infections: results from 2 large Danish population cohorts. Clin. Chem. 62, 335–342 (2016).

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Ravel, J. et al. Vaginal microbiome of reproductive-age women. Proc. Natl Acad. Sci. USA 108, 4680–4687 (2011).

    CAS  Article  PubMed  Google Scholar 

  76. 76.

    Wessels, J. M. et al. Association of high-risk sexual behaviour with diversity of the vaginal microbiota and abundance of Lactobacillus. PLoS ONE 12, e0187612 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Borgdorff, H. et al. Lactobacillus-dominated cervicovaginal microbiota associated with reduced HIV/STI prevalence and genital HIV viral load in African women. ISME J. 8, 1781–1793 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Van de Wijgert, J. H. H. M. et al. The vaginal microbiota: what have we learned after a decade of molecular characterization? PLoS ONE 9, e105998 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    MacIntyre, D. A. et al. The vaginal microbiome during pregnancy and the postpartum period in a European population. Sci. Rep. 5, 8988 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Borgdorff, H. et al. The association between ethnicity and vaginal microbiota composition in Amsterdam, the Netherlands. PLoS ONE 12, e0181135 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Fettweis, J. M. et al. Differences in vaginal microbiome in African American women versus women of European ancestry. Microbiology 160, 2272–2282 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Łaniewski, P. et al. Linking cervicovaginal immune signatures, HPV and microbiota composition in cervical carcinogenesis in non-Hispanic and Hispanic women. Sci. Rep. 8, 7593 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Redondo-Lopez, V., Cook, R. L. & Sobel, J. D. Emerging role of lactobacilli in the control and maintenance of the vaginal bacterial microflora. Rev. Infect. Dis. 12, 856–872 (1990).

    CAS  Article  PubMed  Google Scholar 

  84. 84.

    Hillier, S. L., Krohn, M. A., Rabe, L. K., Klebanoff, S. J. & Eschenbach, D. A. The normal vaginal flora, H2O2-producing lactobacilli, and bacterial vaginosis in pregnant women. Clin. Infect. Dis. 16, S273–S281 (1993).

    Article  PubMed  Google Scholar 

  85. 85.

    Sewankambo, N. et al. HIV-1 infection associated with abnormal vaginal flora morphology and bacterial vaginosis. Lancet 350, 546–550 (1997).

    CAS  Article  PubMed  Google Scholar 

  86. 86.

    Gupta, K. et al. Inverse association of H2O2-producing lactobacilli and vaginal Escherichia coli colonization in women with recurrent urinary tract infections. J. Infect. Dis. 178, 446–450 (1998).

    CAS  Article  PubMed  Google Scholar 

  87. 87.

    Wiesenfeld, H. C., Hillier, S. L., Krohn, M. A., Landers, D. V. & Sweet, R. L. Bacterial vaginosis is a strong predictor of Neisseria gonorrhoeae and Chlamydia trachomatis infection. Clin. Infect. Dis. 36, 663–668 (2003).

    Article  PubMed  Google Scholar 

  88. 88.

    Lai, S. K. et al. Human immunodeficiency virus type 1 is trapped by acidic but not by neutralized human cervicovaginal mucus. J. Virol. 83, 11196–11200 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Di Paola, M. et al. Characterization of cervico-vaginal microbiota in women developing persistent high-risk human papillomavirus infection. Sci. Rep. 7, 10200 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Anahtar, M. N. et al. Cervicovaginal bacteria are a major modulator of host inflammatory responses in the female genital tract. Immunity 42, 965–976 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Keller, M. J. et al. Longitudinal assessment of systemic and genital tract inflammatory markers and endogenous genital tract E. coli inhibitory activity in HIV-infected and uninfected women. Am. J. Reprod. Immunol. 75, 631–642 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Doerflinger, S. Y., Throop, A. L. & Herbst-Kralovetz, M. M. Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner. J. Infect. Dis. 209, 1989–1999 (2014).

    CAS  Article  PubMed  Google Scholar 

  93. 93.

    Lennard, K. et al. Microbial composition predicts genital tract inflammation and persistent bacterial vaginosis in South African adolescent females. Infect. Immun. 86, e00410–17 (2018).

    CAS  PubMed  Google Scholar 

  94. 94.

    Masson, L. et al. Defining genital tract cytokine signatures of sexually transmitted infections and bacterial vaginosis in women at high risk of HIV infection: a cross-sectional study. Sex. Transm. Infect. 90, 580–587 (2014).

    Article  PubMed  Google Scholar 

  95. 95.

    Martin, H. L. et al. Vaginal lactobacilli, microbial flora, and risk of human immunodeficiency virus type 1 and sexually transmitted disease acquisition. J. Infect. Dis. 180, 1863–1868 (1999).

    CAS  Article  PubMed  Google Scholar 

  96. 96.

    McClelland, R. S. et al. Evaluation of the association between the concentrations of key vaginal bacteria and the increased risk of HIV acquisition in African women from five cohorts: a nested case-control study. Lancet Infect. Dis. 18, 554–564 (2018).

    Article  PubMed  Google Scholar 

  97. 97.

    Furci, L., Sironi, F., Tolazzi, M., Vassena, L. & Lusso, P. α-defensins block the early steps of HIV-1 infection: interference with the binding of gp120 to CD4. Blood 109, 2928–2935 (2007).

    CAS  PubMed  Google Scholar 

  98. 98.

    Pace, B. T., Lackner, A. A., Porter, E. & Pahar, B. The role of defensins in HIV pathogenesis. Mediators Inflamm. 2017, 5186904 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Hearps, A. C. et al. Vaginal lactic acid elicits an anti-inflammatory response from human cervicovaginal epithelial cells and inhibits production of pro-inflammatory mediators associated with HIV acquisition. Mucosal Immunol. 10, 1480–1490 (2017).

    CAS  Article  PubMed  Google Scholar 

  100. 100.

    Pecora, D. V. A comparison of transtracheal aspiration with other methods of determining the bacterial flora of the lower respiratory tract. N. Eng. J. Med. 269, 664–666 (1963).

    CAS  Article  Google Scholar 

  101. 101.

    Dickson, R. P. et al. Analysis of culture-dependent versus culture-independent techniques for identification of bacteria in clinically obtained bronchoalveolar lavage fluid. J. Clin. Microbiol. 52, 3605–3613 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Sibley, C. D. et al. Culture enriched molecular profiling of the cystic fibrosis airway microbiome. PLoS ONE 6, e22702 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Collins, A. M. et al. Bronchoalveolar lavage (BAL) for research; obtaining adequate sample yield. J. Vis. Exp. 85, e4345 (2014).

  104. 104.

    Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    Article  CAS  Google Scholar 

  105. 105.

    Segal, L. N. et al. Enrichment of lung microbiome with supraglottic taxa is associated with increased pulmonary inflammation. Microbiome 1, 19 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Dickson, R. P. et al. Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography. Ann. Am. Thorac. Soc. 12, 821–830 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Hilty, M. et al. Disordered microbial communities in asthmatic airways. PLoS ONE 5, e8578 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Charlson, E. S. et al. Assessing bacterial populations in the lung by replicate analysis of samples from the upper and lower respiratory tracts. PLoS ONE 7, e42786 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Bassis, C. M. et al. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. mBio 6, e00037 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Dickson, R. P. et al. Bacterial topography of the healthy human lower respiratory tract. mBio https://doi.org/10.1128/mBio.02287-16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Dickson, R. P. & Huffnagle, G. B. The lung microbiome: new principles for respiratory bacteriology in health and disease. PLoS Pathog. 11, e1004923 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Dickson, R. P., Erb-Downward, J. R. & Huffnagle, G. B. Homeostasis and its disruption in the lung microbiome. Am. J. Physiol. Lung Cell. Mol. Physiol. 309, L1047–L1055 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Shenoy, M. K. et al. Immune response and mortality risk relate to distinct lung microbiomes in patients with HIV and pneumonia. Am. J. Respir. Crit. Care Med. 195, 104–114 (2016).

    Article  Google Scholar 

  114. 114.

    Segal, L. N. et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nat. Microbiol. 1, 16031 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Murdock, B. J. et al. Interleukin-17 drives pulmonary eosinophilia following repeated exposure to Aspergillus fumigatus conidia. Infect. Immun. 80, 1424–1436 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Thomas, D. W. et al. Probiotics and prebiotics in pediatrics. Pediatrics 126, 1217–1231 (2010).

    Article  PubMed  Google Scholar 

  117. 117.

    Hill, C. et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11, 506–514 (2014).

    Article  PubMed  Google Scholar 

  118. 118.

    Luoto, R. et al. Prebiotic and probiotic supplementation prevents rhinovirus infections in preterm infants: a randomized, placebo-controlled trial. J. Allergy Clin. Immunol. 133, 405–413 (2014).

    Article  PubMed  Google Scholar 

  119. 119.

    Lohner, S., Kullenberg, D., Antes, G., Decsi, T. & Meerpohl, J. J. Prebiotics in healthy infants and children for prevention of acute infectious diseases: a systematic review and meta-analysis. Nutr. Rev. 72, 523–531 (2014).

    Article  PubMed  Google Scholar 

  120. 120.

    Rycroft, C. E., Jones, M. R., Gibson, G. R. & Rastall, R. A. A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. J. Appl. Microbiol. 91, 878–887 (2001).

    CAS  Article  PubMed  Google Scholar 

  121. 121.

    Marx, S. P., Winkler, S. & Hartmeier, W. Metabolization of β-(2,6)-linked fructose-oligosaccharides by different bifidobacteria. FEMS Microbiol. Lett. 182, 163–169 (2000).

    CAS  PubMed  Google Scholar 

  122. 122.

    Guigoz, Y., Rochat, F., Perruisseau-Carrier, G., Rochat, I. & Schiffrin, E. J. Effects of oligosaccharide on the faecal flora and non-specific immune system in elderly people. Nutr. Res. 22, 13–25 (2002).

    CAS  Article  Google Scholar 

  123. 123.

    Koga, Y. et al. Age-associated effect of kestose on Faecalibacterium prausnitzii and symptoms in the atopic dermatitis infants. Pediatr. Res. 80, 844–851 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Pokusaeva, K., Fitzgerald, G. F. & van Sinderen, D. Carbohydrate metabolism in Bifidobacteria. Genes Nutr. 6, 285–306 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Pan, X.-D., Chen, F.-Q., Wu, T.-X., Tang, H.-G. & Zhao, Z.-Y. Prebiotic oligosaccharides change the concentrations of short-chain fatty acids and the microbial population of mouse bowel. J. Zhejiang. Univ. Sci. B 10, 258–263 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Correa-Oliveira, R., Fachi, J. L., Vieira, A., Sato, F. T. & Vinolo, M. A. Regulation of immune cell function by short-chain fatty acids. Clin. Transl. Immunol. 5, e73 (2016).

    Article  CAS  Google Scholar 

  127. 127.

    Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Venkataraman, A. et al. Variable responses of human microbiomes to dietary supplementation with resistant starch. Microbiome 4, 33 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Kunz, C., Rudloff, S., Baier, W., Klein, N. & Strobel, S. Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu. Rev. Nutr. 20, 699–722 (2000).

    CAS  Article  PubMed  Google Scholar 

  130. 130.

    Shoaf, K., Mulvey, G. L., Armstrong, G. D. & Hutkins, R. W. Prebiotic galactooligosaccharides reduce adherence of enteropathogenic Escherichia coli to tissue culture cells. Infect. Immun. 74, 6920–6928 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Zhang, K. et al. The non-toxigenic Clostridium difficile CD37 protects mice against infection with a BI/NAP1/027 type of C. difficile strain. Anaerobe 36, 49–52 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Gerding, D. N. et al. Administration of spores of nontoxigenic Clostridium difficile strain M3 for prevention of recurrent C. difficile infection: a randomized clinical trial. JAMA 313, 1719–1727 (2015).

    Article  PubMed  Google Scholar 

  133. 133.

    Cotter, P. D., Hill, C. & Ross, R. P. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol. 3, 777–788 (2005).

    CAS  Article  PubMed  Google Scholar 

  134. 134.

    Servin, A. L. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol. Rev. 28, 405–440 (2004).

    CAS  Article  PubMed  Google Scholar 

  135. 135.

    Mukai, T., Kaneko, S., Matsumoto, M. & Ohori, H. Binding of Bifidobacterium bifidum and Lactobacillus reuteri to the carbohydrate moieties of intestinal glycolipids recognized by peanut agglutinin. Int. J. Food Microbiol. 90, 357–362 (2004).

    CAS  Article  PubMed  Google Scholar 

  136. 136.

    Liu, L. et al. Global, regional, and national causes of child mortality in 2000–13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet 385, 430–440 (2015).

    Article  PubMed  Google Scholar 

  137. 137.

    Thaver, D. & Zaidi, A. K. Burden of neonatal infections in developing countries: a review of evidence from community-based studies. Pediatr. Infect. Dis. J. 28, S3–S9 (2009).

    Article  PubMed  Google Scholar 

  138. 138.

    Panigrahi, P. et al. A randomized synbiotic trial to prevent sepsis among infants in rural India. Nature 548, 407–412 (2017).

    CAS  Article  PubMed  Google Scholar 

  139. 139.

    Kassam, Z., Lee, C. H., Yuan, Y. & Hunt, R. H. Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am. J. Gastroenterol. 108, 500–508 (2013).

    Article  PubMed  Google Scholar 

  140. 140.

    Van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407–415 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. 141.

    Manges, A. R., Steiner, T. S. & Wright, A. J. Fecal microbiota transplantation for the intestinal decolonization of extensively antimicrobial-resistant opportunistic pathogens: a review. Infect. Dis. (Lond) 48, 587–592 (2016).

    CAS  Article  Google Scholar 

  142. 142.

    Khoruts, A. & Sadowsky, M. J. Understanding the mechanisms of faecal microbiota transplantation. Nat. Rev. Gastroenterol. Hepatol. 13, 508–516 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  143. 143.

    Weingarden, A. et al. Dynamic changes in short- and long-term bacterial composition following fecal microbiota transplantation for recurrent Clostridium difficile infection. Microbiome 3, 10 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Hamilton, M. J., Weingarden, A. R., Unno, T., Khoruts, A. & Sadowsky, M. J. High-throughput DNA sequence analysis reveals stable engraftment of gut microbiota following transplantation of previously frozen fecal bacteria. Gut Microbes 4, 125–135 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Seekatz, A. M. et al. Recovery of the gut microbiome following fecal microbiota transplantation. mBio 5, e00893-14 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Smillie, C. S. et al. Strain tracking reveals the determinants of bacterial engraftment in the human gut following fecal microbiota transplantation. Cell Host Microbe 23, 229–240.e5 (2018).

    CAS  Article  PubMed  Google Scholar 

  147. 147.

    Staley, C., Kelly, C. R., Brandt, L. J., Khoruts, A. & Sadowsky, M. J. Complete microbiota engraftment is not essential for recovery from recurrent Clostridium difficile infection following fecal microbiota transplantation. mBio 7, e01965-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Ott, S. J. et al. Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection. Gastroenterology 152, 799–811.e7 (2017).

    Article  PubMed  Google Scholar 

  149. 149.

    Zuo, T. et al. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. Gut 67, 634–643 (2018).

    CAS  PubMed  Google Scholar 

  150. 150.

    Morton, E. R. et al. Variation in rural African gut microbiota is strongly correlated with colonization by Entamoeba and subsistence. PLoS Genet. 11, e1005658 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. 151.

    Gilchrist, C. A. et al. Role of the gut microbiota of children in diarrhea due to the protozoan parasite Entamoeba histolytica. J. Infect. Dis. 213, 1579–1585 (2016).

    CAS  Article  PubMed  Google Scholar 

  152. 152.

    Burgess, S. L., Gilchrist, C. A., Lynn, T. C. & Petri, W. A. Jr Parasitic protozoa and interactions with the host intestinal microbiota. Infect. Immun. 85, e00101–17 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  153. 153.

    Sui, Y. et al. Influence of gut microbiome on mucosal immune activation and SHIV viral transmission in naive macaques. Mucosal Immunol. 11, 1219–1229 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  154. 154.

    Dillon, S. M. et al. An altered intestinal mucosal microbiome in HIV-1 infection is associated with mucosal and systemic immune activation and endotoxemia. Mucosal Immunol. 7, 983–994 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  155. 155.

    Ichinohe, T. et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl Acad. Sci. USA 108, 5354–5359 (2011).

    CAS  Article  PubMed  Google Scholar 

  156. 156.

    Rudner, X. L., Happel, K. I., Young, E. A. & Shellito, J. E. Interleukin-23 (IL-23)-IL-17 cytokine axis in murine Pneumocystis carinii infection. Infect. Immun. 75, 3055–3061 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  157. 157.

    Lukacs, N. W. et al. Respiratory virus-induced TLR7 activation controls IL-17-associated increased mucus via IL-23 regulation. J. Immunol. 185, 2231–2239 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  158. 158.

    Jespers, V. et al. A longitudinal analysis of the vaginal microbiota and vaginal immune mediators in women from sub-Saharan Africa. Sci. Rep. 7, 11974 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. 159.

    Gosmann, C. et al. Lactobacillus-deficient cervicovaginal bacterial communities are associated with increased HIV acquisition in young South African women. Immunity 46, 29–37 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  160. 160.

    Christensen-Quick, A. et al. Human Th17 cells lack HIV-inhibitory RNases and are highly permissive to productive HIV infection. J. Virol. 90, 7833–7847 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  161. 161.

    Prescott, S. L. History of medicine: origin of the term microbiome and why it matters. Hum. Microbiome J. 4, 24–25 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank D. R. Hill, K. Rao and C. M. Bassis for helpful feedback on earlier versions of this manuscript, and D. R. Hill for many helpful conversations regarding this manuscript. This work was supported by a grant awarded to V.B.Y. from the National Institute of Allergy and Infectious Diseases at the National Institutes of Health (U01-AI124255).

Author information

Affiliations

Authors

Contributions

All authors contributed to the conceptualization, writing and preparation of this manuscript, as well as the creation of the figures.

Corresponding author

Correspondence to Vincent B. Young.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Libertucci, J., Young, V.B. The role of the microbiota in infectious diseases. Nat Microbiol 4, 35–45 (2019). https://doi.org/10.1038/s41564-018-0278-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing