Article | Published:

Type IV CRISPR RNA processing and effector complex formation in Aromatoleum aromaticum

Nature Microbiologyvolume 4pages8996 (2019) | Download Citation

Abstract

Type IV CRISPR–Cas modules belong to class 1 prokaryotic adaptive immune systems, which are defined by the presence of multisubunit effector complexes. They usually lack the known Cas proteins involved in adaptation and target cleavage, and their function has not been experimentally addressed. To investigate RNA and protein components of this CRISPR–Cas type, we located a complete type IV cas gene locus and an adjacent CRISPR array on a megaplasmid of Aromatoleum aromaticum EbN1, which contains an additional type I-C system on its chromosome. RNA sequencing analyses verified CRISPR RNA (crRNA) production and maturation for both systems. Type IV crRNAs were shown to harbour unusually short 7 nucleotide 5′-repeat tags and stable 3′ hairpin structures. A unique Cas6 variant (Csf5) was identified that generates crRNAs that are specifically incorporated into type IV CRISPR–ribonucleoprotein (crRNP) complexes. Structures of RNA-bound Csf5 were obtained. Recombinant production and purification of the type IV Cas proteins, together with electron microscopy, revealed that Csf2 acts as a helical backbone for type IV crRNPs that include Csf5, Csf3 and a large subunit (Csf1). Mass spectrometry analyses identified protein–protein and protein–RNA contact sites. These results highlight evolutionary connections between type IV and type I CRISPR–Cas systems and demonstrate that type IV CRISPR–Cas systems employ crRNA-guided effector complexes.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The data that support the findings of this study are available from the corresponding author upon request. Crystallographic data and models have been deposited at the protein data bank (PDB) under accession codes 6H9H and 6H9I.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Jansen, R., Embden, J. D., Gaastra, W. & Schouls, L. M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43, 1565–1575 (2002).

  2. 2.

    Bolotin, A., Quinquis, B., Sorokin, A. & Ehrlich, S. D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151, 2551–2561 (2005).

  3. 3.

    Mojica, F. J., Diez-Villasenor, C., Garcia-Martinez, J. & Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60, 174–182 (2005).

  4. 4.

    Pourcel, C., Salvignol, G. & Vergnaud, G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151, 653–663 (2005).

  5. 5.

    Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).

  6. 6.

    Westra, E. R. et al. The CRISPRs, they are a-changin’: how prokaryotes generate adaptive immunity. Annu. Rev. Genet. 46, 311–339 (2012).

  7. 7.

    Mojica, F. J., Diez-Villasenor, C., Garcia-Martinez, J. & Almendros, C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155, 733–740 (2009).

  8. 8.

    Nunez, J. K. et al. Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat. Struct. Mol. Biol. 21, 528–534 (2014).

  9. 9.

    Yosef, I., Goren, M. G. & Qimron, U. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res. 40, 5569–5576 (2012).

  10. 10.

    Swarts, D. C., Mosterd, C., van Passel, M. W. & Brouns, S. J. CRISPR interference directs strand specific spacer acquisition. PLoS ONE 7, e35888 (2012).

  11. 11.

    Pul, U. et al. Identification and characterization of E. coli CRISPR-cas promoters and their silencing by H-NS. Mol. Microbiol. 75, 1495–1512 (2010).

  12. 12.

    Pougach, K. et al. Transcription, processing and function of CRISPR cassettes in Escherichia coli. Mol. Microbiol. 77, 1367–1379 (2010).

  13. 13.

    Brouns, S. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008).

  14. 14.

    Jore, M. M. et al. Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat. Struct. Mol. Biol. 18, 529–536 (2011).

  15. 15.

    Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

  16. 16.

    Hale, C. R. et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139, 945–956 (2009).

  17. 17.

    Garneau, J. E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67–71 (2010).

  18. 18.

    Westra, E. R. et al. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol. Cell 46, 595–605 (2012).

  19. 19.

    Makarova, K. S. et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13, 722–736 (2015).

  20. 20.

    Koonin, E. V., Makarova, K. S. & Zhang, F. Diversity, classification and evolution of CRISPR-Cas systems. Curr. Opin. Microbiol. 37, 67–78 (2017).

  21. 21.

    Mohanraju, P. et al. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 353, aad5147 (2016).

  22. 22.

    Kazlauskiene, M., Tamulaitis, G., Kostiuk, G., Venclovas, C. & Siksnys, V. Spatiotemporal control of Type III-A CRISPR-Cas immunity: coupling DNA degradation with the target RNA recognition. Mol. Cell 62, 295–306 (2016).

  23. 23.

    Huo, Y. et al. Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation. Nat. Struct. Mol. Biol. 21, 771–777 (2014).

  24. 24.

    Sashital, D. G., Wiedenheft, B. & Doudna, J. A. Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol. Cell 46, 606–615 (2012).

  25. 25.

    Voloshin, O. N. & Camerini-Otero, R. D. The DinG protein from Escherichia coli is a structure-specific helicase. J. Biol. Chem. 282, 18437–18447 (2007).

  26. 26.

    Gleditzsch, D. et al. Modulating the Cascade architecture of a minimal Type I-F CRISPR-Cas system. Nucleic Acids Res. 44, 5872–5882 (2016).

  27. 27.

    Pausch, P. et al. Structural variation of Type I-F CRISPR RNA guided DNA surveillance. Mol. Cell 67, 622–632 (2017).

  28. 28.

    Nam, K. H. et al. Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system. Structure 20, 1574–1584 (2012).

  29. 29.

    Hochstrasser, M. L., Taylor, D. W., Kornfeld, J. E., Nogales, E. & Doudna, J. A. DNA targeting by a minimal CRISPR RNA-guided cascade. Mol. Cell 63, 840–851 (2016).

  30. 30.

    Garside, E. L. et al. Cas5d processes pre-crRNA and is a member of a larger family of CRISPR RNA endonucleases. RNA 18, 2020–2028 (2012).

  31. 31.

    Hochstrasser, M. L. & Doudna, J. A. Cutting it close: CRISPR-associated endoribonuclease structure and function. Trends Biochem. Sci. 40, 58–66 (2015).

  32. 32.

    Plagens, A. et al. In vitro assembly and activity of an archaeal CRISPR-Cas type I-A Cascade interference complex. Nucleic Acids Res. 42, 5125–5138 (2014).

  33. 33.

    Reeks, J. et al. Structure of a dimeric crenarchaeal Cas6 enzyme with an atypical active site for CRISPR RNA processing. Biochem. J. 452, 223–230 (2013).

  34. 34.

    Shmakov, S. A. et al. The CRISPR spacer space is dominated by sequences from species-specific mobilomes. mBio 8, e01397-17 (2017).

  35. 35.

    Rabus, R. & Widdel, F. Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch. Microbiol. 163, 96–103 (1995).

  36. 36.

    Grant, T., Rohou, A. & Grigorieff, N. cisTEM, user-friendly software for single-particle image processing. elife 7, e35383 (2018).

  37. 37.

    Miyatake, H., Hasegawa, T. & Yamano, A. New methods to prepare iodinated derivatives by vaporizing iodine labelling (VIL) and hydrogen peroxide VIL (HYPER-VIL). Acta Crystallogr. D 62, 280–289 (2006).

  38. 38.

    Gabadinho, J. et al. MxCuBE: a synchrotron beamline control environment customized for macromolecular crystallography experiments. J. Synchrotron. Radiat. 17, 700–707 (2010).

  39. 39.

    Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).

  40. 40.

    Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D 67, 235–242 (2011).

  41. 41.

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

  42. 42.

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

  43. 43.

    McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

  44. 44.

    Kramer, K. et al. Photo-cross-linking and high-resolution mass spectrometry for assignment of RNA-binding sites in RNA-binding proteins. Nat. Methods 11, 1064–1070 (2014).

  45. 45.

    Yang, B. et al. Identification of cross-linked peptides from complex samples. Nat. Methods 9, 904–906 (2012).

  46. 46.

    Combe, C. W., Fischer, L. & Rappsilber, J. xiNET: cross-link network maps with residue resolution. Mol. Cell Proteomics 14, 1137–1147 (2015).

Download references

Acknowledgements

G.B thanks the LOEWE excellence initiative for financial support. G.B. and P.P. acknowledge the always excellent support by the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. This work was supported by the DFG (FOR1680 to L.R.), SPP2141 (to L.R. and G.B.), TÜBİTAK (to A.Ö.) and the Max Planck Society (to L.R.).

Author information

Affiliations

  1. Max Planck Institute for Terrestrial Microbiology, Marburg, Germany

    • Ahsen Özcan
    •  & Lennart Randau
  2. LOEWE Center for Synthetic Microbiology (Synmikro), Philipps University Marburg, Marburg, Germany

    • Patrick Pausch
    • , Johann Heider
    • , Thomas Heimerl
    • , Gert Bange
    •  & Lennart Randau
  3. Faculty of Chemistry, Philipps-University-Marburg, Marburg, Germany

    • Patrick Pausch
    •  & Gert Bange
  4. Bioanalytics Research Group, Department of Clinical Chemistry, University Medical Centre, Göttingen, Germany

    • Andreas Linden
    •  & Henning Urlaub
  5. Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany

    • Andreas Linden
    • , Alexander Wulf
    •  & Henning Urlaub
  6. Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany

    • Karola Schühle
    •  & Johann Heider

Authors

  1. Search for Ahsen Özcan in:

  2. Search for Patrick Pausch in:

  3. Search for Andreas Linden in:

  4. Search for Alexander Wulf in:

  5. Search for Karola Schühle in:

  6. Search for Johann Heider in:

  7. Search for Henning Urlaub in:

  8. Search for Thomas Heimerl in:

  9. Search for Gert Bange in:

  10. Search for Lennart Randau in:

Contributions

A.Ö. and P.P. purified proteins. P.P. determined the crystal structure. A.L., A.W. and H.U. performed mass spectrometry analyses. K.S. and J.H. cultured A. aromatoleum strains. T.H. performed transmission electron microscopy analyses. L.R and A.Ö. conceived the experiments. L.R. wrote the manuscript with support from A.Ö., P.P., G.B., J.H., T.H. and H.U.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Lennart Randau.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–6, Supplementary Tables 1, 2, 4 and 5.

  2. Reporting Summary

  3. Supplementary Table 3

    Overview of crRNP protein–protein cross-links. Contains a structured representation of all identified protein–protein cross-links (cross-linked peptide spectrum matches (CSM)) of the recombinant type IV crRNP of Aromatoleum aromaticum. A detailed legend is included as a separate worksheet.

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41564-018-0274-8