Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model


Humans with metabolic and inflammatory diseases frequently harbour lower levels of butyrate-producing bacteria in their gut. However, it is not known whether variation in the levels of these organisms is causally linked with disease development and whether diet modifies the impact of these bacteria on health. Here we show that a prominent gut-associated butyrate-producing bacterial genus (Roseburia) is inversely correlated with atherosclerotic lesion development in a genetically diverse mouse population. We use germ-free apolipoprotein E-deficient mice colonized with synthetic microbial communities that differ in their capacity to generate butyrate to demonstrate that Roseburia intestinalis interacts with dietary plant polysaccharides to: impact gene expression in the intestine, directing metabolism away from glycolysis and toward fatty acid utilization; lower systemic inflammation; and ameliorate atherosclerosis. Furthermore, intestinal administration of butyrate reduces endotoxaemia and atherosclerosis development. Together, our results illustrate how modifiable diet-by-microbiota interactions impact cardiovascular disease, and suggest that interventions aimed at increasing the representation of butyrate-producing bacteria may provide protection against atherosclerosis.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Colonization with R. intestinalis increases caecal levels of SCFAs in mice fed a HPP diet.
Fig. 2: Colonization with R. intestinalis inhibits the development of atherosclerosis in mice fed a HPP diet.
Fig. 3: R. intestinalis affects histone PTMs in the colon.
Fig. 4: Colonization with R. intestinalis regulates energy metabolism and improves intestinal barrier function.
Fig. 5: TB supplementation reduces the development of atherosclerosis in mice colonized with non-butyrate producers.

Data availability:

The SRA accession ID for COPRO-Seq is SRP158926. The accession number for RNA sequencing data is GEO: GSE119141. The SRA accession ID for the Ath-HMDP microbiome data is SRP142550. Additional data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L. & Gordon, J. I. Human nutrition, the gut microbiome and the immune system. Nature 474, 327–336 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    Hooper, L. V., Midtvedt, T. & Gordon, J. I. How host–microbial interactions shape the nutrient environment of the mammalian intestine. Annu. Rev. Nutr. 22, 283–307 (2002).

    CAS  Article  Google Scholar 

  3. 3.

    Xu, J. et al. Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol. 5, e156 (2007).

    Article  Google Scholar 

  4. 4.

    Martens, E. C., Koropatkin, N. M., Smith, T. J. & Gordon, J. I. Complex glycan catabolism by the human gut microbiota: the bacteroidetes sus-like paradigm. J. Biol. Chem. 284, 24673–24677 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    Koropatkin, N. M., Cameron, E. A. & Martens, E. C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 10, 323–335 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    Martens, E. C., Kelly, A. G., Tauzin, A. S. & Brumer, H. The devil lies in the details: how variations in polysaccharide fine-structure impact the physiology and evolution of gut microbes. J. Mol. Biol. 426, 3851–3865 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    Schnorr, S. et al. Gut microbiome of the Hadza hunter-gatherers. Nat. Commun. 5, 3654 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    Sonnenburg, E. D. et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212–215 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Ritzhaupt, A., Ellis, A., Hosie, K. B. & Shirazi-Beechey, S. P. The characterization of butyrate transport across pig and human colonic luminal membrane. J. Physiol. 507, 819–830 (1998).

    CAS  Article  Google Scholar 

  10. 10.

    Candido, E. P. M., Reeves, R. & Davie, J. R. Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 14, 105–113 (1978).

    CAS  Article  Google Scholar 

  11. 11.

    Segain, J. P. et al. Butyrate inhibits inflammatory responses through NFκB inhibition: implications for Crohn’s disease. Gut 47, 397–403 (2000).

    CAS  Article  Google Scholar 

  12. 12.

    Kasahara, K. et al. Commensal bacteria at the crossroad between cholesterol homeostasis and chronic inflammation in atherosclerosis. J. Lipid Res. 58, 519–528 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Mitchell, J. A., Ryffel, B., Quesniaux, V. F. J., Cartwright, N. & Paul-Clark, M. Role of pattern-recognition receptors in cardiovascular health and disease. Biochem. Soc. Trans. 35, 1449–1452 (2007).

    CAS  Article  Google Scholar 

  14. 14.

    Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–65 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    Tang, W. H. W. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368, 1575–1584 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    Karlsson, F. H. et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 3, 1245 (2012).

    Article  Google Scholar 

  17. 17.

    Louis, P., Young, P., Holtrop, G. & Flint, H. J. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ. Microbiol. 12, 304–314 (2010).

    CAS  Article  Google Scholar 

  18. 18.

    Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    CAS  Article  Google Scholar 

  19. 19.

    Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    Walker, A. W. et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 5, 220–230 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    Duncan, S. H. et al. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl. Environ. Microbiol. 73, 1073–1078 (2007).

    CAS  Article  Google Scholar 

  22. 22.

    Bennett, B. J. et al. Genetic architecture of atherosclerosis in mice: a systems genetics analysis of common inbred strains. PLoS Genet. 11, e1005711 (2015).

    Article  Google Scholar 

  23. 23.

    Duncan, S. H., Barcenilla, A., Stewart, C. S., Pryde, S. E. & Flint, H. J. Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl. Environ. Microbiol. 68, 5186–5190 (2002).

    CAS  Article  Google Scholar 

  24. 24.

    Guilloteau, P. et al. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr. Res. Rev. 23, 366–384 (2010).

    CAS  Article  Google Scholar 

  25. 25.

    Cybulsky, M. I. et al. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J. Clin. Invest. 107, 1255–1262 (2001).

    CAS  Article  Google Scholar 

  26. 26.

    Boesten, L. S. M. et al. Tumor necrosis factor-α promotes atherosclerotic lesion progression in APOE*3-leiden transgenic mice. Cardiovasc. Res. 66, 179–185 (2005).

    CAS  Article  Google Scholar 

  27. 27.

    Nightingale, K. P. et al. Cross-talk between histone modifications in response to histone deacetylase inhibitors: MLL4 links histone H3 acetylation and histone H3K4 methylation. J. Biol. Chem. 282, 4408–4416 (2007).

    CAS  Article  Google Scholar 

  28. 28.

    Fan, J., Krautkramer, K. A., Feldman, J. L. & Denu, J. M. Metabolic regulation of histone post-translational modifications. ACS Chem. Biol. 10, 95–108 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    Krautkramer, K. A., Reiter, L., Denu, J. M. & Dowell, J. A. Quantification of SAHA-dependent changes in histone modifications using data-independent acquisition mass spectrometry. J. Proteome Res. 14, 3252–3262 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Donohoe, D. R. et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13, 517–526 (2011).

    CAS  Article  Google Scholar 

  31. 31.

    Peng, L., Li, Z.-R., Green, R. S., Holzman, I. R. & Lin, J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J. Nutr. 139, 1619–1625 (2009).

    CAS  Article  Google Scholar 

  32. 32.

    Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    Ohira, H. et al. Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages. J. Atheroscler. Thromb. 20, 425–442 (2013).

    CAS  Article  Google Scholar 

  34. 34.

    Li, H. et al. Sodium butyrate stimulates expression of fibroblast growth factor 21 in liver by inhibition of histone deacetylase 3. Diabetes 61, 797–806 (2012).

    CAS  Article  Google Scholar 

  35. 35.

    Youm, Y. H. et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat. Med. 21, 263–269 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Balsinde, J., Balboa, M. A. & Dennis, E. A. Inflammatory activation of arachidonic acid signaling in murine P388D1 macrophages via sphingomyelin synthesis. J. Biol. Chem. 272, 20373–20377 (1997).

    CAS  Article  Google Scholar 

  37. 37.

    Zhao, L. et al. Selective interleukin-12 synthesis defect in 12/15-lipoxygenase-deficient macrophages associated with reduced atherosclerosis in a mouse model of familial hypercholesterolemia. J. Biol. Chem. 277, 35350–35356 (2002).

    CAS  Article  Google Scholar 

  38. 38.

    Cyrus, T. et al. Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice. J. Clin. Invest. 103, 1597–1604 (1999).

    CAS  Article  Google Scholar 

  39. 39.

    Threapleton, D. E. et al. Dietary fibre intake and risk of cardiovascular disease: systematic review and meta-analysis. BMJ 347, f6879 (2013).

    Article  Google Scholar 

  40. 40.

    Marques, F. Z. et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation 135, 964–977 (2017).

    CAS  Article  Google Scholar 

  41. 41.

    Rivière, A., Selak, M., Lantin, D., Leroy, F. & De Vuyst, L. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front. Microbiol. 7, 979 (2016).

    Article  Google Scholar 

  42. 42.

    Ait-Oufella, H. et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med. 12, 178–180 (2006).

    CAS  Article  Google Scholar 

  43. 43.

    Kelly, C. J., Zheng, L., Taylor, C. T. & Colgan, S. P. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17, 662–671 (2015).

    CAS  Article  Google Scholar 

  44. 44.

    Glover, L. E., Lee, J. S. & Colgan, S. P. Oxygen metabolism and barrier regulation in the intestinal mucosa. J. Clin. Invest. 126, 3680–3688 (2016).

    Article  Google Scholar 

  45. 45.

    Riggs, M. G., Whittaker, R. G., Neumann, J. R. & Ingram, V. M. n-Butyrate causes histone modification in HeLa and Friend erythroleukaemia cells. Nature 268, 462–464 (1977).

    CAS  Article  Google Scholar 

  46. 46.

    Goodman, A. L. et al. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc. Natl Acad. Sci. USA 108, 6252–6257 (2011).

    CAS  Article  Google Scholar 

  47. 47.

    McNulty, N. P. et al. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci. Transl. Med 3, 106ra106 (2011).

    Article  Google Scholar 

  48. 48.

    Rey, F. E. et al. Metabolic niche of a prominent sulfate-reducing human gut bacterium. Proc. Natl Acad. Sci. USA 110, 13582–13587 (2013).

    CAS  Article  Google Scholar 

  49. 49.

    Krautkramer, K. A. et al. Diet–microbiota interactions mediate global epigenetic programming in multiple host tissues. Mol. Cell 64, 982–992 (2016).

    CAS  Article  Google Scholar 

Download references


The authors would like to thank C. Pan (UCLA) for help in 16S sequencing, G. A. Barrett-Wilt (University of Wisconsin Mass Spectrometry Facility) for technical support with GC/MS analysis, D. A. Roenneburg (Department of Surgery, University of Wisconsin School of Medicine and Public Health) for assistance with histology and B.D. Mickelson (Envigo) for assistance with diets. We also thank the University of Wisconsin Biotechnology Center DNA Sequencing Facility for providing sequencing and support services. This work was supported in part by grants NIH DK108259 (to F.E.R.) and HL30568 (to A.J.L.), by the National Institute of Food and Agriculture, US Department of Agriculture, under award number 2016-67017-24416 (to F.E.R.) and the Swedish Heart Lung Foundation (to F.B.). This work was also supported in part by a grant from a Transatlantic Networks of Excellence Award from the Leducq Foundation. K.K. is supported by the Astellas Foundation for Research on Metabolic Disorders, the International Atherosclerosis Society, the Yamada Science Foundation and the Sumitomo Life Welfare and Culture Foundation. K.A.K. is supported by NIH F30 DK108494-02.

Author information




F.E.R. conceived, designed and supervised the project. K.K. designed the project, performed most of the experiments, analysed the results and generated figures and tables. K.A.K. performed the PTM analysis, analysed results and generated the figures. K.A.R. and K.K. performed COPRO-Seq analysis. R.L.K. cultured bacterial strains. F.B. provided GF ApoE/ mice and E.I.V. maintained the GF mouse facility. A.J.L. and M.M. conceived and performed the Ath-HMDP experiment, and E.O. generated and analysed 16S rRNA gene data. K.K., K.A.K., R.L.K. and F.E.R. wrote the manuscript. A.J.L., M.M., F.B. and J.M.D. provided critical feedback. All authors read and agreed on the final version of the manuscript.

Corresponding author

Correspondence to Federico E. Rey.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–18

Reporting Summary

Supplementary Tables

Supplementary Tables 1–20

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kasahara, K., Krautkramer, K.A., Org, E. et al. Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nat Microbiol 3, 1461–1471 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing