A Chlamydia effector combining deubiquitination and acetylation activities induces Golgi fragmentation

Abstract

Pathogenic bacteria are armed with potent effector proteins that subvert host signalling processes during infection1. The activities of bacterial effectors and their associated roles within the host cell are often poorly understood, particularly for Chlamydia trachomatis2, a World Health Organization designated neglected disease pathogen. We identify and explain remarkable dual Lys63-deubiquitinase (DUB) and Lys-acetyltransferase activities in the Chlamydia effector ChlaDUB1. Crystal structures capturing intermediate stages of each reaction reveal how the same catalytic centre of ChlaDUB1 can facilitate such distinct processes, and enable the generation of mutations that uncouple the two activities. Targeted Chlamydia mutant strains allow us to link the DUB activity of ChlaDUB1 and the related, dedicated DUB ChlaDUB2 to fragmentation of the host Golgi apparatus, a key process in Chlamydia infection for which effectors have remained elusive. Our work illustrates the incredible versatility of bacterial effector proteins, and provides important insights towards understanding Chlamydia pathogenesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Identification of specialized and dual-function CE-clan enzymes.
Fig. 2: Molecular dissection of dual deubiquitinase/acetyltransferase activities.
Fig. 3: ChlaDUB function is required for C. trachomatis Golgi fragmentation.
Fig. 4: ChlaDUB deubiquitinase activity is responsible for C. trachomatis Golgi fragmentation.

Data availability

The data that support the findings in this study are available from the corresponding author on request. Coordinates and structure factors for the ChlaDUB1~Ub, ChlaDUB1~CoA and C.a. ChlaDUB structures have been deposited with the protein data bank, accession codes 6GZS, 6GZT and 6GZU respectively.

References

  1. 1.

    Lin, Y. H. & Machner, M. P. Exploitation of the host cell ubiquitin machinery by microbial effector proteins. J. Cell Sci. 130, 1985–1996 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    Bastidas, R. J. & Valdivia, R. H. Emancipating Chlamydia: advances in the genetic manipulation of a recalcitrant pathogen. Microbiol. Mol. Biol. Rev. 80, 411–427 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    Rytkönen, A. et al. SseL, a Salmonella deubiquitinase required for macrophage killing and virulence. Proc. Natl Acad. Sci. USA 104, 3502–3507 (2007).

    Article  Google Scholar 

  4. 4.

    Misaghi, S. et al. Chlamydia trachomatis-derived deubiquitinating enzymes in mammalian cells during infection. Mol. Microbiol. 61, 142–150 (2006).

    CAS  Article  Google Scholar 

  5. 5.

    Catic, A., Misaghi, S., Korbel, G. A. & Ploegh, H. L. ElaD, a deubiquitinating protease expressed by E. coli. PLoS ONE 2, e381 (2007).

    Article  Google Scholar 

  6. 6.

    Chosed, R. et al. Structural analysis of Xanthomonas XopD provides insights into substrate specificity of ubiquitin-like protein proteases. J. Biol. Chem. 282, 6773–6782 (2007).

    CAS  Article  Google Scholar 

  7. 7.

    Mukherjee, S. et al. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312, 1211–1214 (2006).

    CAS  Article  Google Scholar 

  8. 8.

    Mittal, R., Peak-Chew, S. Y. & McMahon, H. T. Acetylation of MEK2 and IκB kinase (IKK) activation loop residues by YopJ inhibits signaling. Proc. Natl Acad. Sci. USA 103, 18574–18579 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    Jones, R. M. et al. Salmonella AvrA coordinates suppression of host immune and apoptotic defenses via JNK pathway blockade. Cell Host Microbe 3, 233–244 (2008).

    CAS  Article  Google Scholar 

  10. 10.

    Sheedlo, M. J. et al. Structural basis of substrate recognition by a bacterial deubiquitinase important for dynamics of phagosome ubiquitination. Proc. Natl Acad. Sci. USA 112, 15090–15095 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Pruneda, J. N. et al. Molecular basis for ubiquitin and ubiquitin-like specificities in bacterial effector proteases. Mol. Cell 63, 261–276 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Corn, J. E. & Vucic, D. Ubiquitin in inflammation: the right linkage makes all the difference. Nat. Struct. Mol. Biol. 21, 297–300 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Le Negrate, G. et al. ChlaDub1 of Chlamydia trachomatis suppresses NF-kappaB activation and inhibitis IkappaBalpha ubiquitination and degradation. Cell. Microbiol. 10, 1879–1892 (2008).

    Article  Google Scholar 

  14. 14.

    Mesquita, F. S. et al. The Salmonella deubiquitinase SseL inhibits selective autophagy of cytosolic aggregates. PLoS Pathog. 8, e1002743 (2012).

    CAS  Article  Google Scholar 

  15. 15.

    Fischer, A. et al. Chlamydia trachomatis-containing vacuole serves as deubiquitination platform to stabilize Mcl-1 and to interfere with host defense. eLife 6, e21465 (2017).

    Article  Google Scholar 

  16. 16.

    Zhang, Z. M. et al. Structure of a pathogen effector reveals the enzymatic mechanism of a novel acetyltransferase family. Nat. Struct. Mol. Biol. 23, 847–852 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    Mittal, R., Peak-Chew, S. Y., Sade, R. S., Vallis, Y. & McMahon, H. T. The acetyltransferase activity of the bacterial toxin YopJ of Yersinia is activated by eukaryotic host cell inositol hexakisphosphate. J. Biol. Chem. 285, 19927–19934 (2010).

    CAS  Article  Google Scholar 

  18. 18.

    Reverter, D. & Lima, C. D. A basis for SUMO protease specificity provided by analysis of human senp2 and a senp2-SUMO complex. Structure 12, 1519–1531 (2004).

    CAS  Article  Google Scholar 

  19. 19.

    Reverter, D. et al. Structure of a complex between NEDD8 and the Ulp/Senp protease family member Den1. J. Mol. Biol. 345, 141–151 (2005).

    CAS  Article  Google Scholar 

  20. 20.

    Shen, L. et al. Structural basis of NEDD8 ubiquitin discrimination by the deNEDDylating enzyme NEDP1. EMBO J. 24, 1341–1351 (2005).

    CAS  Article  Google Scholar 

  21. 21.

    Fullam, E. et al. Divergence of cofactor recognition across evolution: coenzyme A binding in a prokaryotic arylamine N-acetyltransferase. J. Mol. Biol. 375, 178–191 (2008).

    CAS  Article  Google Scholar 

  22. 22.

    Sixt, B. S. & Valdivia, R. H. Molecular genetic analysis of Chlamydia species. Annu. Rev. Microbiol. 70, 179–198 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    Kokes, M. et al. Integrating chemical mutagenesis and whole-genome sequencing as a platform for forward and reverse genetic analysis of Chlamydia. Cell Host Microbe 17, 716–725 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    Heuer, D. et al. Chlamydia causes fragmentation of the Golgi compartment to ensure reproduction. Nature 457, 731–735 (2009).

    CAS  Article  Google Scholar 

  25. 25.

    Dumoux, M. & Hayward, R. D. Membrane contact sites between pathogen-containing compartments and host organelles. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 1861, 895–899 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Wang, X., Hybiske, K. & Stephens, R. S. Direct visualization of the expression and localization of chlamydial effector proteins within infected host cells. Pathog. Dis. 76, fty011 (2018).

    PubMed Central  Google Scholar 

  27. 27.

    Henderson, B. An overview of protein moonlighting in bacterial infection. Biochem. Soc. Trans. 42, 1720–1727 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    Wesolowski, J. et al. Chlamydia hijacks ARF GTPases to coordinate microtubule posttranslational modifications and Golgi complex repositioning. mBio 8, e02280–16 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    Rejman Lipinski, A. et al. Rab6 and Rab11 regulate Chlamydia trachomatis development and golgin-84-dependent Golgi fragmentation. PLoS Pathog. 5, e1000615 (2009).

    Article  Google Scholar 

  30. 30.

    Berrow, N. S. et al. A versatile ligation-independent cloning method suitable for high-throughput expression screening applications. Nucleic Acids Res. 35, e45 (2007).

    Article  Google Scholar 

  31. 31.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS  Article  Google Scholar 

  32. 32.

    Ekkebus, R. et al. On terminal alkynes that can react with active-site cysteine nucleophiles in proteases. J. Am. Chem. Soc. 135, 2867–2870 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    CAS  Article  Google Scholar 

  34. 34.

    Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution?. Acta Crystallogr. D Biol. Crystallogr. 69, 1204–1214 (2013).

    CAS  Article  Google Scholar 

  35. 35.

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  Article  Google Scholar 

  36. 36.

    Terwilliger, T. C. et al. Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard. Acta Crystallogr. D Biol. Crystallogr. 65, 582–601 (2009).

    CAS  Article  Google Scholar 

  37. 37.

    Terwilliger, T. C. et al. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr. D Biol. Crystallogr. 64, 61–69 (2008).

    CAS  Article  Google Scholar 

  38. 38.

    McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  Article  Google Scholar 

  39. 39.

    Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  Article  Google Scholar 

  40. 40.

    Nguyen, B. D. & Valdivia, R. H. Virulence determinants in the obligate intracellular pathogen Chlamydia trachomatis revealed by forward genetic approaches. Proc. Natl Acad. Sci. USA 109, 1263–1268 (2012).

    CAS  Article  Google Scholar 

  41. 41.

    Chen, Y. S. et al. The Chlamydia trachomatis type III secretion chaperone Slc1 engages multiple early effectors, including TepP, a tyrosinephosphorylated protein required for the recruitment of CrkI-II to nascent inclusions and innate immune signaling. PLoS Pathog. 10, e1003954 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

We thank members of our laboratories for reagents and advice, particularly Lee Dolat (Duke University) for his contribution to some preliminary Chlamydia infection work. Access to DLS was supported in part by the EU FP7 infrastructure grant BIOSTRUCT-X (contract no. 283570). Work in the D.K. lab was funded by the Medical Research Council (grant no. U105192732), the European Research Council (grant no. 724804), and the Lister Institute for Preventive Medicine. J.N.P. was supported on an EMBO Long-Term Fellowship. Work in the R.H.V. lab was funded by the National Institute of Health (grant no. R01AI100759 to R.H.V.) and the National Institute of Allergy and Infectious Diseases (grant no. STI CRC U19 AI084044 to R.J.B. and R.H.V.). E.B. was supported by North West Cancer Research. B.S. was supported by the Medical Research Council.

Author information

Affiliations

Authors

Contributions

Conceptualization was by J.N.P. and D.K. The investigation was carried out by J.N.P., R.J.B., E.B., K.N.S. and B.S. The methodology was done by R.J.B., R.H.V., M.J.C. and S.U. The writing was by J.N.P. and D.K. Funding acquisition was by D.K., R.H.V., R.J.B., S.U. and M.J.C.

Corresponding author

Correspondence to David Komander.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–10, Supplementary Tables 1–3

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pruneda, J.N., Bastidas, R.J., Bertsoulaki, E. et al. A Chlamydia effector combining deubiquitination and acetylation activities induces Golgi fragmentation. Nat Microbiol 3, 1377–1384 (2018). https://doi.org/10.1038/s41564-018-0271-y

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing