Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Collapse of genetic division of labour and evolution of autonomy in pellicle biofilms

A Publisher Correction to this article was published on 11 January 2019

This article has been updated


Closely related microorganisms often cooperate, but the prevalence and stability of cooperation between different genotypes remain debatable. Here, we track the evolution of pellicle biofilms formed through genetic division of labour and ask whether partially deficient partners can evolve autonomy. Pellicles of Bacillus subtilis rely on an extracellular matrix composed of exopolysaccharide (EPS) and the fibre protein TasA. In monocultures, ∆eps and ∆tasA mutants fail to form pellicles, but, facilitated by cooperation, they succeed in co-culture. Interestingly, cooperation collapses on an evolutionary timescale and ∆tasA gradually outcompetes its partner ∆eps. Pellicle formation can evolve independently from division of labour in ∆eps and ∆tasA monocultures, by selection acting on the residual matrix component, TasA or EPS, respectively. Using a set of interdisciplinary tools, we unravel that the TasA producer (∆eps) evolves via an unconventional but reproducible substitution in TasA that modulates the biochemical properties of the protein. Conversely, the EPS producer (ΔtasA) undergoes genetically variable adaptations, all leading to enhanced EPS secretion and biofilms with different biomechanical properties. Finally, we revisit the collapse of division of labour between Δeps and ΔtasA in light of a strong frequency versus exploitability trade-off that manifested in the solitarily evolving partners. We propose that such trade-off differences may represent an additional barrier to evolution of division of labour between genetically distinct microorganisms.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Changes in pellicle productivity and morphology during evolution.
Fig. 2: Complementation assay to recreate the evolved Δeps phenotype.
Fig. 3: Fibre formation by native ΔSP-TasA and its cysteine-containing derivatives.
Fig. 4: Investigation and recreation of the evolved ΔtasA phenotype.
Fig. 5: Population structure and fitness of the evolved Δeps and ΔtasA populations.
Fig. 6: Effects of Δeps or ΔtasA evolutionary advantage on the productivity of mixed pellicles.

Data availability

All data sets generated and analysed during this study are available from the corresponding author on request.

Change history

  • 11 January 2019

    In the version of this Article originally published, author Carolina Falcón Garcia’s name was coded wrongly, resulting in it being incorrect when exported to citation databases. This has now been corrected, though no visible changes will be apparent.


  1. 1.

    Hamilton, W. D. The genetical evolution of social behaviour. I. J. Theor. Biol. 7, 1–16 (1964).

    CAS  Article  Google Scholar 

  2. 2.

    Queller, D. C., Ponte, E., Bozzaro, S. & Strassmann, J. E. Single-gene greenbeard effects in the social amoeba Dictyostelium discoideum. Science 299, 105–106 (2003).

    CAS  Article  Google Scholar 

  3. 3.

    Gibbs, K. A. & Greenberg, E. P. Territoriality in Proteus: advertisement and aggression. Chem. Rev. 111, 188–194 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    Kiers, T. E., Rousseau, R. A., West, S. A. & Denison, R. F. Host sanctions and the legume–rhizobium mutualism. Nature 425, 78–81 (2003).

    CAS  Article  Google Scholar 

  5. 5.

    West, S. A., Griffin, A. S. & Gardner, A. Evolutionary explanations for cooperation. Curr. Biol. 17, R661–R672 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    Zhang, Z., Claessen, D. & Rozen, D. E. Understanding microbial divisions of labor. Front. Microbiol. 7, 2070 (2016).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    van Gestel, J., Vlamakis, H. & Kolter, R. From cell differentiation to cell collectives: Bacillus subtilis uses division of labor to migrate. PLoS Biol. 13, e1002141 (2015).

    Article  Google Scholar 

  8. 8.

    Dragoš, A. et al. Division of labor during biofilm matrix production. Curr. Biol. 28, 1903–1913 (2018).

    Article  Google Scholar 

  9. 9.

    Pande, S. & Kost, C. Bacterial unculturability and the formation of intercellular metabolic networks. Trends Microbiol. 25, 349–361 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    Kim, W., Levy, S. B. & Foster, K. R. Rapid radiation in bacteria leads to a division of labour. Nat. Commun. 7, 10508 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Germerodt, S. et al. Pervasive selection for cooperative cross-feeding in bacterial communities. PLoS Comput. Biol. 12, e1004986 (2016).

    Article  Google Scholar 

  12. 12.

    Lowery, N. V., McNally, L., Ratcliff, W. C. & Brown, S. P. Division of labor, bet hedging, and the evolution of mixed biofilm investment strategies. mBio 8, e00672-17 (2017).

    Article  Google Scholar 

  13. 13.

    Wahl, L. M. The division of labor: genotypic versus phenotypic specialization. Am. Nat. 160, 135–145 (2002).

    CAS  Article  Google Scholar 

  14. 14.

    D’Souza, G. & Kost, C. Experimental evolution of metabolic dependency in bacteria. PLoS Genet. 12, e1006364 (2016).

    Article  Google Scholar 

  15. 15.

    Morris, J. J., Lenski, R. E. & Zinser, E. R. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. mBio 3, e00036-12 (2012).

    Article  Google Scholar 

  16. 16.

    Oliveira, N. M., Niehus, R. & Foster, K. R. Evolutionary limits to cooperation in microbial communities. Proc. Natl Acad. Sci. USA 111, 17941–17946 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    Cooper, G. A. & West, S. A. Division of labour and the evolution of extreme specialization. Nat. Ecol. Evol. 2, 1161–1167 (2018).

    Article  Google Scholar 

  18. 18.

    Waite, A. J. & Shou, W. Adaptation to a new environment allows cooperators to purge cheaters stochastically. Proc. Natl Acad. Sci. USA 109, 19079–19086 (2012).

    CAS  Article  Google Scholar 

  19. 19.

    Martin, M. et al. De novo evolved interference competition promotes the spread of biofilm defectors. Nat. Commun. 8, 15127 (2017).

    Article  Google Scholar 

  20. 20.

    O’Brien, S., Luján, A. M., Paterson, S., Cant, M. A. & Buckling, A. Adaptation to public goods cheats in Pseudomonas aeruginosa. Proc. Biol. Sci. 284, 20171089 (2017).

    Article  Google Scholar 

  21. 21.

    Kümmerli, R. et al. Co-evolutionary dynamics between public good producers and cheats in the bacterium Pseudomonas aeruginosa. J. Evol. Biol. 28, 2264–2274 (2015).

    Article  Google Scholar 

  22. 22.

    Fiegna, F., Yu, Y.-T. N., Kadam, S. V. & Velicer, G. J. Evolution of an obligate social cheater to a superior cooperator. Nature 441, 310–314 (2006).

    CAS  Article  Google Scholar 

  23. 23.

    Hammerschmidt, K., Rose, C. J., Kerr, B. & Rainey, P. B. Life cycles, fitness decoupling and the evolution of multicellularity. Nature 515, 75–79 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    Dragoš, A. et al. Evolution of exploitative interactions during diversification in Bacillus subtilis biofilms. FEMS Microbiol. Ecol. 94, fix155 (2018).

    Article  Google Scholar 

  25. 25.

    Branda, S. S., Gonzalez-Pastor, J. E., Ben-Yehuda, S., Losick, R. & Kolter, R. Fruiting body formation by Bacillus subtilis. Proc. Natl Acad. Sci. USA 98, 11621–11626 (2001).

    CAS  Article  Google Scholar 

  26. 26.

    Branda, S. S., Chu, F., Kearns, D. B., Losick, R. & Kolter, R. A major protein component of the Bacillus subtilis biofilm matrix. Mol. Microbiol. 59, 1229–1238 (2006).

    CAS  Article  Google Scholar 

  27. 27.

    Romero, D., Vlamakis, H., Losick, R. & Kolter, R. An accessory protein required for anchoring and assembly of amyloid fibres in B. subtilis biofilms. Mol. Microbiol. 80, 1155–1168 (2011).

    CAS  Article  Google Scholar 

  28. 28.

    Romero, D., Aguilar, C., Losick, R. & Kolter, R. Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc. Natl Acad. Sci. USA 107, 2230–2234 (2010).

    CAS  Article  Google Scholar 

  29. 29.

    Dragoš, A., Kovács, Á. T. & Claessen, D. The role of functional amyloids in multicellular growth and development of Gram-positive bacteria. Biomolecules 7, E60 (2017)..

  30. 30.

    Diehl, A. et al. Structural changes of TasA in biofilm formation of Bacillus subtilis. Proc. Natl Acad. Sci. USA 115, 3237–3242 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    Arnaouteli, S. et al. Bifunctionality of a biofilm matrix protein controlled by redox state. Proc. Natl Acad. Sci. USA 114, E6184–E6191 (2017).

    CAS  Article  Google Scholar 

  32. 32.

    Kim, W., Racimo, F., Schluter, J., Levy, S. B. & Foster, K. R. Importance of positioning for microbial evolution. Proc. Natl Acad. Sci. USA 111, E1639–E1647 (2014).

    CAS  Article  Google Scholar 

  33. 33.

    West, S. A., Griffin, A. S. & Gardner, A. Social semantics: altruism, cooperation, mutualism, strong reciprocity and group selection. J. Evol. Biol. 20, 415–432 (2007).

    CAS  Article  Google Scholar 

  34. 34.

    Foster, K. R. & Bell, T. Competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol. 22, 1845–1850 (2012).

    CAS  Article  Google Scholar 

  35. 35.

    Abrudan, M. I. et al. Socially mediated induction and suppression of antibiosis during bacterial coexistence. Proc. Natl Acad. Sci. USA 112, 11054–11059 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Rainey, P. B. & Rainey, K. Evolution of cooperation and conflict in experimental bacterial populations. Nature 425, 72–74 (2003).

    CAS  Article  Google Scholar 

  37. 37.

    Scanlan, P. D. & Buckling, A. Co-evolution with lytic phage selects for the mucoid phenotype of Pseudomonas fluorescens SBW25. ISME J. 6, 1148–1158 (2012).

    CAS  Article  Google Scholar 

  38. 38.

    Miskinyte, M. et al. The genetic basis of Escherichia coli pathoadaptation to macrophages. PLoS Pathog. 9, e1003802 (2013).

    Article  Google Scholar 

  39. 39.

    Rainey, P. B. & Travisano, M. Adaptive radiation in a heterogeneous environment. Nature 394, 69–72 (1998).

    CAS  Article  Google Scholar 

  40. 40.

    Konkol, M. A., Blair, K. M. & Kearns, D. B. Plasmid-encoded ComI inhibits competence in the ancestral 3610 strain of Bacillus subtilis. J. Bacteriol. 195, 4085–4093 (2013).

    CAS  Article  Google Scholar 

  41. 41.

    Borkar, S. G. Laboratory Techniques in Plant Bacteriology (CRC Press, Boca Raton, 2017).

  42. 42.

    Werb, M. et al. Surface topology affects wetting behavior of Bacillus subtilis biofilms. NPJ Biofilms Microbiomes 3, 11 (2017).

    Article  Google Scholar 

Download references


We thank S. West for his comments on our manuscript. This work was funded by the Deutsche Forschungsgemeinschaft (DFG) to Á.T.K. (KO4741/2.1) within the Priority Program SPP1617. A.D. and C.F.G. were supported by fellowships from the Alexander von Humboldt Foundation and Consejo Nacional de Ciencia y Tecnología (CONACyT), respectively. The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 713683 (COFUNDfellowsDTU). This work was also supported by the DFG through project B11 in the framework of SFB863 granted to O.L., and a start-up grant from the Technical University of Denmark to Á.T.K.

Author information




A.D. and Á.T.K. conceived the project. A.D., M.M., C.F.G., L.K., P.P. and T.H. performed the experiments. B.B. performed the next-generation sequencing data analysis. G.M., G.B., D.L. and O.L. contributed with the methods, analysed the data and supervised the experiments. A.D. and Á.T.K. wrote the manuscript, with all authors contributing to the final version.

Corresponding author

Correspondence to Ákos T. Kovács.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–5, Supplementary References, Supplementary Figures 1–11, Supplementary Results.

Reporting Summary

Supplementary Dataset 1

List of mutations detected in evolved single isolates and populations.

Supplementary Video 1

Effects of cysteine-containing TasA on wetting behaviour of B. subtilis pellicles.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dragoš, A., Martin, M., Falcón García , C. et al. Collapse of genetic division of labour and evolution of autonomy in pellicle biofilms. Nat Microbiol 3, 1451–1460 (2018).

Download citation

Further reading


Quick links