Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A surface endogalactanase in Bacteroides thetaiotaomicron confers keystone status for arabinogalactan degradation

An Author Correction to this article was published on 20 September 2019

This article has been updated

Abstract

Glycans are major nutrients for the human gut microbiota (HGM). Arabinogalactan proteins (AGPs) comprise a heterogenous group of plant glycans in which a β1,3-galactan backbone and β1,6-galactan side chains are conserved. Diversity is provided by the variable nature of the sugars that decorate the galactans. The mechanisms by which nutritionally relevant AGPs are degraded in the HGM are poorly understood. Here we explore how the HGM organism Bacteroides thetaiotaomicron metabolizes AGPs. We propose a sequential degradative model in which exo-acting glycoside hydrolase (GH) family 43 β1,3-galactanases release the side chains. These oligosaccharide side chains are depolymerized by the synergistic action of exo-acting enzymes in which catalytic interactions are dependent on whether degradation is initiated by a lyase or GH. We identified two GHs that establish two previously undiscovered GH families. The crystal structures of the exo-β1,3-galactanases identified a key specificity determinant and departure from the canonical catalytic apparatus of GH43 enzymes. Growth studies of Bacteroidetes spp. on complex AGP revealed 3 keystone organisms that facilitated utilization of the glycan by 17 recipient bacteria, which included B. thetaiotaomicron. A surface endo-β1,3-galactanase, when engineered into B. thetaiotaomicron, enabled the bacterium to utilize complex AGPs and act as a keystone organism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The structure of arabinogalactans, PULs upregulated by the glycans and enzymes that attack these glycans.
Fig. 2: The crystal structure of GH43_24 β1,3-d-galactosidases in complex with ligands.
Fig. 3: HPAEC analysis of the activity of GH43_24 β1,3-d-galactanases.
Fig. 4: Degradation of GA-AGP side chains.
Fig. 5: Cell localization and growth of Bacteroides on complex AGPs.
Fig. 6: Growth profile of keystone and recipient Bacteroides species on complex AGPs.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and the Supplementary Information. The crystal structure data sets generated (coordinate files and structure factors) have been deposited in the Protein Data Bank (PDB) and are listed in Supplementary Table 6 together with the PDB accession codes.

Change history

  • 20 September 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Clemente, J. C., Ursell, L. K., Parfrey, L. W. & Knight, R. The impact of the gut microbiota on human health: an integrative view. Cell 148, 1258–1270 (2012).

    Article  CAS  Google Scholar 

  2. El Kaoutari, A., Armougom, F., Gordon, J. I., Raoult, D. & Henrissat, B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat. Rev. Microbiol. 11, 497–504 (2013).

    Article  CAS  Google Scholar 

  3. Koropatkin, N. M., Cameron, E. A. & Martens, E. C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 10, 323–335 (2012).

    Article  CAS  Google Scholar 

  4. Porter, N. T. & Martens, E. C. The critical roles of polysaccharides in gut microbial ecology and physiology. Annu. Rev. Microbiol. 71, 349–369 (2017).

    Article  CAS  Google Scholar 

  5. Gilbert, H. J., Stalbrand, H. & Brumer, H. How the walls come crumbling down: recent structural biochemistry of plant polysaccharide degradation. Curr. Opin. Plant Biol. 11, 338–348 (2008).

    Article  CAS  Google Scholar 

  6. Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).

    Article  CAS  Google Scholar 

  7. Davies, G. & Henrissat, B. Structures and mechanisms of glycosyl hydrolases. Structure 3, 853–859 (1995).

    Article  CAS  Google Scholar 

  8. Ndeh, D. & Gilbert, H. J. Biochemistry of complex glycan depolymerisation by the human gut microbiota. FEMS Microbiol. Rev. 42, 146–164 (2018).

    Article  CAS  Google Scholar 

  9. Martens, E. C., Koropatkin, N. M., Smith, T. J. & Gordon, J. I. Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. J. Biol. Chem. 284, 24673–24677 (2009).

    Article  CAS  Google Scholar 

  10. Larsbrink, J. et al. A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature 506, 498–502 (2014).

    Article  CAS  Google Scholar 

  11. Luis, A. S. et al. Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nat. Microbiol. 3, 210–219 (2018).

    Article  CAS  Google Scholar 

  12. Fincher, G. B., Stone, B. A. & Clarke, A. E. Arabinogalactan-proteins: structure, biosynthesis, and function. Annu. Rev. Plant Phys. 34, 47–70 (1983).

    Article  CAS  Google Scholar 

  13. Vidal, S., Williams, P., Doco, T., Moutounet, M. & Pellerin, P. The polysaccharides of red wine: total fractionation and characterization. Carbohydr. Polym. 54, 439–447 (2003).

    Article  CAS  Google Scholar 

  14. Capek, P., Matulova, M., Navarini, L. & Suggi-Liverani, F. Structural features of an arabinogalactan-protein isolated from instant coffee powder of Coffea arabica beans. Carbohydr. Polym. 80, 180–185 (2010).

    Article  CAS  Google Scholar 

  15. Dauqan, E. & Abdullah, A. Utilization of gum arabic for industries and human health. Am. J. Appl. Sci. 10, 1270–1279 (2013).

    Article  CAS  Google Scholar 

  16. McNamara, M. K. & Stone, B. A. Isolation, characterization and chemical synthesis of a galactosyl-hydroxyproline linkage compound from wheat endosperm arabinogalactan-peptide. Lebensm. Wiss. Technol. 14, 182–187 (1981).

    CAS  Google Scholar 

  17. Ichinose, H. et al. Characterization of an exo-β-1,3-galactanase from Clostridium thermocellum. Appl. Environ. Microbiol. 72, 3515–3523 (2006).

    Article  CAS  Google Scholar 

  18. Munoz-Munoz, J. et al. An evolutionarily distinct family of polysaccharide lyases removes rhamnose capping of complex arabinogalactan proteins. J. Biol. Chem. 292, 13271–13283 (2017).

    Article  CAS  Google Scholar 

  19. Munoz-Munoz, J., Cartmell, A., Terrapon, N., Henrissat, B. & Gilbert, H. J. Unusual active site location and catalytic apparatus in a glycoside hydrolase family. Proc. Natl Acad. Sci. USA 114, 4936–4941 (2017).

    Article  CAS  Google Scholar 

  20. Calame, W., Weseler, A. R., Viebke, C., Flynn, C. & Siemensma, A. D. Gum arabic establishes prebiotic functionality in healthy human volunteers in a dose-dependent manner. Br. J. Nutr. 100, 1269–1275 (2008).

    Article  CAS  Google Scholar 

  21. Martens, E. C. et al. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 9, e1001221 (2011).

    Article  CAS  Google Scholar 

  22. Mewis, K., Lenfant, N., Lombard, V. & Henrissat, B. Dividing the large glycoside hydrolase family 43 into subfamilies: a motivation for detailed enzyme characterization. Appl. Environ. Microbiol. 82, 1686–1692 (2016).

    Article  CAS  Google Scholar 

  23. Kotake, T. et al. Endo-β-1,3-galactanase from winter mushroom Flammulina velutipes. J. Biol. Chem. 286, 27848–27854 (2011).

    Article  CAS  Google Scholar 

  24. Cartmell, A. et al. The structure and function of an arabinan-specific α-1,2-arabinofuranosidase identified from screening the activities of bacterial GH43 glycoside hydrolases. J. Biol. Chem. 286, 15483–15495 (2011).

    Article  CAS  Google Scholar 

  25. Kitazawa, K. et al. β-galactosyl Yariv reagent binds to the β-1,3-galactan of arabinogalactan proteins. Plant Physiol. 161, 1117–1126 (2013).

    Article  CAS  Google Scholar 

  26. Nakamura, A. et al. “Newton’s cradle” proton relay with amide-imidic acid tautomerization in inverting cellulase visualized by neutron crystallography. Sci. Adv. 1, e1500263 (2015).

    Article  Google Scholar 

  27. Gloster, T. M., Turkenburg, J. P., Potts, J. R., Henrissat, B. & Davies, G. J. Divergence of catalytic mechanism within a glycosidase family provides insight into evolution of carbohydrate metabolism by human gut flora. Chem. Biol. 15, 1058–1067 (2008).

    Article  CAS  Google Scholar 

  28. Rakoff-Nahoum, S., Coyne, M. J. & Comstock, L. E. An ecological network of polysaccharide utilization among human intestinal symbionts. Curr. Biol. 24, 40–49 (2014).

    Article  CAS  Google Scholar 

  29. Rakoff-Nahoum, S., Foster, K. R. & Comstock, L. E. The evolution of cooperation within the gut microbiota. Nature 533, 255–259 (2016).

    Article  CAS  Google Scholar 

  30. Sharma, S. K., Corrales, G. & Penadés, S. Single step stereoselective synthesis of unprotected 2,4-dinitrophenyl glycosides. Tetrahedron Lett. 36, 5627–5630 (1995).

    Article  CAS  Google Scholar 

  31. Vonhoff, S., Heightman, T. D. & Vasella, A. Inhibition of glycosidases by lactam oximes: Influence of the aglycon in disaccharide analogues. Helv. Chim. Acta 81, 1710–1725 (1998).

    Article  CAS  Google Scholar 

  32. Cavanagh, J., Fairbrother, W. J., Palmer, A. G. & Skelton, N. J. Protein NMR Spectroscopy: Principles and Practice (Academic Press, San Diego, 1996).

    Google Scholar 

  33. Vranken, W. F. et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687–696 (2005).

    Article  CAS  Google Scholar 

  34. Bock, K. & Pedersen, C. Study of CH-13 coupling-constants in pentapyranoses and some of their derivatives. Acta Chem. Scand. B 29, 258–264 (1975).

    Article  Google Scholar 

  35. Koropatkin, N. M., Martens, E. C., Gordon, J. I. & Smith, T. J. Starch catabolism by a prominent human gut symbiont is directed by the recognition of amylose helices. Structure 16, 1105–1115 (2008).

    Article  CAS  Google Scholar 

  36. Cuskin, F. et al. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature 517, 165–169 (2015).

    Article  CAS  Google Scholar 

  37. Rodriguez-Ortega, M. J. et al. Characterization and identification of vaccine candidate proteins through analysis of the group A Streptococcus surface proteome. Nat. Biotechnol. 24, 191–197 (2006).

    Article  CAS  Google Scholar 

  38. Davis, S. et al. Expanding proteome coverage with charge ordered parallel ion analysis (CHOPIN) combined with broad specificity proteolysis. J. Proteome. Res. 16, 1288–1299 (2017).

    Article  CAS  Google Scholar 

  39. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  Google Scholar 

  40. Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome. Res. 10, 1794–1805 (2011).

    Article  CAS  Google Scholar 

  41. MacLean, B. et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966–968 (2010).

    Article  CAS  Google Scholar 

  42. Mi, H. et al. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 45, D183–D189 (2017).

    Article  CAS  Google Scholar 

  43. Zhou, M., Boekhorst, J., Francke, C. & Siezen, R. J. LocateP: genome-scale subcellular-location predictor for bacterial proteins. BMC Bioinformatics 9, 173 (2008).

    Article  Google Scholar 

  44. Evans, P. R. An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr. D 67, 282–292 (2011).

    Article  CAS  Google Scholar 

  45. Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).

    Article  CAS  Google Scholar 

  46. Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D 62, 72–82 (2006).

    Article  Google Scholar 

  47. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  48. Cowtan, K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr. D 62, 1002–1011 (2006).

    Article  Google Scholar 

  49. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  50. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D 67, 235–242 (2011).

    Article  CAS  Google Scholar 

  51. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    Article  CAS  Google Scholar 

  52. Terrapon, N., Lombard, V., Gilbert, H. J. & Henrissat, B. Automatic prediction of polysaccharide utilization loci in Bacteroidetes species. Bioinformatics 31, 647–655 (2015).

    Article  CAS  Google Scholar 

  53. Terrapon, N., Weiner, J., Grath, S., Moore, A. D. & Bornberg-Bauer, E. Rapid similarity search of proteins using alignments of domain arrangements. Bioinformatics 30, 274–281 (2014).

    Article  CAS  Google Scholar 

  54. Cartmell, A. et al. How members of the human gut microbiota overcome the sulfation problem posed by glycosaminoglycans. Proc. Natl Acad. Sci. USA 114, 7037–7042 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by an Advanced Grant from the European Research Council (grant no. 322820) awarded to H.J.G. and B.H. supporting D.A.N., A.C., J.M.-M., J.B. and N.T., and a Wellcome Trust Senior Investigator Award to H.J.G. (grant no. WT097907MA) that supported E.C.L. The Biotechnology and Biological Research Council project ‘Ricefuel’ (grant number BB/K020358/1) awarded to H.J.G. supported A.L. We thank Diamond Light Source for access to beamline I02, I04-1 and I24 (mx1960, mx7854 and mx9948) that contributed to the results presented here.

Author information

Authors and Affiliations

Authors

Contributions

Enzyme characterization and oligosaccharide purification were performed by A.C., D.A.N. and J.M.-M. Gene deletion strains were constructed by D.N. and A.L. Co-culturing experiments were carried out by A.C, J.B. and D.A.N. Western blots were carried out by D.A.N. Phylogenetic reconstruction and metagenomic analysis were performed by N.T. and B.H. Bacterial growth and transcriptomic experiments: E.C.L. and D.A.N. X-ray protein crystallography was carried out by A.C., A.B. J.M.-M. NMR experiments were performed by A.C. and K.S. Mass spectrometry was carried out by J.G., L.Y. and P.D. Chemical synthesis was performed by P.Z.F., S.S. and S.J.W. T.H., M.T. and E.C.L. performed the whole-cell proteomics. Experiments were designed by H.J.G. A.C. J.M.-M. and D.A.N. The manuscript was written by H.J.G. with substantial contributions from N.T., B.H. and S.J.W. Figures were prepared by J.M.-M. and E.C.L.

Corresponding author

Correspondence to Harry J. Gilbert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Tables 1–7, Supplementary Figures 1–15.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cartmell, A., Muñoz-Muñoz, J., Briggs, J.A. et al. A surface endogalactanase in Bacteroides thetaiotaomicron confers keystone status for arabinogalactan degradation. Nat Microbiol 3, 1314–1326 (2018). https://doi.org/10.1038/s41564-018-0258-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0258-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing