Congenital Zika virus (ZIKV) syndrome may cause fetal microcephaly in ~1% of affected newborns. Here, we investigate whether the majority of clinically inapparent newborns might suffer from long-term health impairments not readily visible at birth. Infection of immunocompetent pregnant mice with high-dose ZIKV caused severe offspring phenotypes, such as fetal death, as expected. By contrast, low-dose (LD) maternal ZIKV infection resulted in reduced fetal birth weight but no other obvious phenotypes. Male offspring born to LD ZIKV-infected mothers had increased testosterone (TST) levels and were less likely to survive in utero infection compared to their female littermates. Males also presented an increased number of immature neurons in apical and basal hippocampal dendrites, while female offspring had immature neurons in basal dendrites only. Moreover, male offspring with high but not very high (storm) TST levels were more likely to suffer from learning and memory impairments compared to females. Future studies are required to understand the impact of TST on neuropathological and neurocognitive impairments in later life. In summary, increased sex-specific vigilance is required in countries with high ZIKV prevalence, where impaired neurodevelopment may be camouflaged by a healthy appearance at birth.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

Accession numbers of the ZIKV strains used to perform the phylogenetic analysis are indicated in Supplementary Fig. 1. The data that support the findings of this study are available from the corresponding author on request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Dick, G. W., Kitchen, S. F. & Haddow, A. J. Zika virus. I. Isolations and serological specificity. Trans. R. Soc. Trop. Med. Hyg. 46, 509–520 (1952).

  2. 2.

    Driggers, R. W. et al. Zika virus infection with prolonged maternal viremia and fetal brain abnormalities. N. Engl. J. Med. 374, 2142–2151 (2016).

  3. 3.

    Faria, N. R. et al. Zika virus in the Americas: early epidemiological and genetic findings. Science 352, 345–349 (2016).

  4. 4.

    França, G. V. et al. Congenital Zika virus syndrome in Brazil: a case series of the first 1501 livebirths with complete investigation. Lancet 388, 891–897 (2016).

  5. 5.

    van der Eijk, A. A. Miscarriage associated with Zika virus infection. N. Engl. J. Med. 375, 1002–1004 (2016).

  6. 6.

    Brasil, P. et al. Zika virus infection in pregnant women in Rio de Janeiro. N. Engl. J. Med. 375, 2321–2334 (2016).

  7. 7.

    Cauchemez, S. et al. Association between Zika virus and microcephaly in French Polynesia, 2013–15: a retrospective study. Lancet 387, 2125–2132 (2016).

  8. 8.

    Kapogiannis, B. G., Chakhtoura, N., Hazra, R. & Spong, C. Y. Bridging knowledge gaps to understand how Zika virus exposure and infection affect child development. JAMA Pediatr. 171, 478–485 (2017).

  9. 9.

    Cugola, F. R. et al. The Brazilian Zika virus strain causes birth defects in experimental models. Nature 534, 267–271 (2016).

  10. 10.

    Miner, J. J. et al. Zika virus infection during pregnancy in mice causes placental damage and fetal demise. Cell 165, 1081–1091 (2016).

  11. 11.

    Li, C. et al. Zika virus disrupts neural progenitor development and leads to microcephaly in mice. Cell Stem Cell 19, 120–126 (2016).

  12. 12.

    Yockey, L. J. et al. Vaginal exposure to Zika virus during pregnancy leads to fetal brain infection. Cell 166, 1247–1256 (2016).

  13. 13.

    Engels, G. et al. Pregnancy-related immune adaptation promotes the emergence of highly virulent H1N1 influenza virus strains in allogenically pregnant mice. Cell Host Microbe 21, 321–333 (2017).

  14. 14.

    Shin Yim, Y. et al. Reversing behavioural abnormalities in mice exposed to maternal inflammation. Nature 549, 482–487 (2017).

  15. 15.

    Estes, M. L. & McAllister, A. K. Maternal immune activation: implications for neuropsychiatric disorders. Science 353, 772–777 (2016).

  16. 16.

    Leuner, B. & Shors, T. J. New spines, new memories. Mol. Neurobiol. 29, 117–130 (2004).

  17. 17.

    Maliqueo, M., Echiburú, B. & Crisosto, N. Sex steroids modulate uterine–placental vasculature: implications for obstetrics and neonatal outcomes. Front. Physiol. 7, 152 (2016).

  18. 18.

    Shors, T. J. & Miesegaes, G. Testosterone in utero and at birth dictates how stressful experience will affect learning in adulthood. Proc. Natl Acad. Sci. USA 99, 13955–13960 (2002).

  19. 19.

    Barbazanges, A., Piazza, P. V., Le Moal, M. & Maccari, S. Maternal glucocorticoid secretion mediates long-term effects of prenatal stress. J. Neurosci. 16, 3943–3949 (1996).

  20. 20.

    Li, H. et al. Zika virus infects neural progenitors in the adult mouse brain and alters proliferation. Cell Stem Cell 19, 593–598 (2016).

  21. 21.

    Coan, P. M. et al. Adaptations in placental nutrient transfer capacity to meet fetal growth demands depend on placental size in mice. J. Physiol. 586, 4567–4576 (2008).

  22. 22.

    He, S., Allen, J. C. Jr., Malhotra, R., Østbye, T. & Tan, T. C. Association of maternal serum progesterone in early pregnancy with low birth weight and other adverse pregnancy outcomes. J. Matern. Fetal Neonatal Med. 29, 1999–2004 (2016).

  23. 23.

    Aiken, C. E. & Ozanne, S. E. Sex differences in developmental programming models. Reproduction 145, R1–R13 (2013).

  24. 24.

    Manikkam, M. et al. Fetal programming: prenatal testosterone excess leads to fetal growth retardation and postnatal catch-up growth in sheep. Endocrinology 145, 790–798 (2004).

  25. 25.

    Meikle, D. B. & Drickamer, L. C. Food availability and secondary sex ratio variation in wild and laboratory house mice (Mus musculus). J. Reprod. Fertil. 78, 587–591 (1986).

  26. 26.

    Nguyen, T. V. et al. Sex-specific associations of testosterone with prefrontal-hippocampal development and executive function. Psychoneuroendocrinology 76, 206–217 (2017).

  27. 27.

    Miyamoto, A. et al. Microglia contact induces synapse formation in developing somatosensory cortex. Nat. Commun. 7, 12540 (2016).

  28. 28.

    Miner, J. J. et al. Zika virus infection in mice causes panuveitis with shedding of virus in tears. Cell Rep. 16, 3208–3218 (2016).

  29. 29.

    van den Pol, A. N., Mao, G., Yang, Y., Ornaghi, S. & Davis, J. N. Zika virus targeting in the developing brain. J. Neurosci. 37, 2161–2175 2017).

  30. 30.

    Anacker, C. & Hen, R. Adult hippocampal neurogenesis and cognitive flexibility—linking memory and mood. Nat. Rev. Neurosci. 18, 335–346 (2017).

  31. 31.

    D’Hooge, R. & De Deyn, P. P. Applications of the Morris water maze in the study of learning and memory. Brain Res. Rev. 36, 60–90 (2001).

  32. 32.

    Janus, C. Search strategies used by APP transgenic mice during navigation in the Morris water maze. Learn. Mem. 11, 337–346 (2004).

  33. 33.

    Brody, D. L. & Holtzman, D. M. Morris water maze search strategy analysis in PDAPP mice before and after experimental traumatic brain injury. Exp. Neurol. 197, 330–340 (2006).

  34. 34.

    Lee, A. S., Duman, R. S. & Pittenger, C. A double dissociation revealing bidirectional competition between striatum and hippocampus during learning. Proc. Natl Acad. Sci. USA 105, 17163–17168 (2008).

  35. 35.

    Sabuncu, M. R. et al. Morphometricity as a measure of the neuroanatomical signature of a trait. Proc. Natl Acad. Sci. USA 113, E5749–E5756 (2016).

  36. 36.

    Celec, P., Ostatníková, D. & Hodosy, J. On the effects of testosterone on brain behavioral functions. Front. Neurosci. 9, 12 (2015).

  37. 37.

    Adams Waldorf, K. M. et al. Congenital Zika virus infection as a silent pathology with loss of neurogenic output in the fetal brain. Nat. Med. 24, 368–374 (2018).

  38. 38.

    Russell, P. K., Udomsakdi, S. & Halstead, S. B. Antibody response in dengue and dengue hemorrhagic fever. Jpn. J. Med. Sci. Biol. 20, 103–108 (1967).

  39. 39.

    Styer, L. M. et al. Mosquitoes inoculate high doses of West Nile virus as they probe and feed on live hosts. PLoS Pathog. 3, 1262–1270 (2007).

  40. 40.

    Croy, B. A., Yamada, A. T., DeMayo, F. J. & Adamson, S. L. The Guide to Investigation of Mouse Pregnancy (Academic, San Diego, CA, 2014).

  41. 41.

    Tappe, D. et al. Ross River virus infection in a traveller returning from northern Australia. Med. Microbiol. Immunol. 198, 271–273 (2009).

  42. 42.

    Solano, M. E., Thiele, K., Kowal, M. K. & Arck, P. C. Identification of suitable reference genes in the mouse placenta. Placenta 39, 7–15 (2016).

  43. 43.

    Mu, J., Slevin, J. C., Qu, D., McCormick, S. & Adamson, S. L. In vivo quantification of embryonic and placental growth during gestation in mice using micro-ultrasound. Reprod. Biol. Endocrinol. 6, 34 (2008).

  44. 44.

    Paxinos, G. & Franklin, K. B. J. Paxinos and Franklin’s the Mouse Brain in Stereotaxic Coordinates 4th edn (Elsevier, Amsterdam, 2012).

  45. 45.

    Risher, W. C., Ustunkaya, T., Singh Alvarado, J. & Eroglu, C. Rapid Golgi analysis method for efficient and unbiased classification of dendritic spines. PLoS ONE 9, e107591 (2014).

  46. 46.

    Ferreira, T. A. et al. Neuronal morphometry directly from bitmap images. Nat. Methods 11, 982–984 (2014).

  47. 47.

    Hölter, S. M. et al. Tests for anxiety-related behavior in mice. Curr. Protoc. Mouse Biol. 5, 291–309 (2015).

  48. 48.

    Hölter, S. M. et al. Assessing cognition in mice. Curr. Protoc. Mouse Biol. 5, 331–358 (2015).

  49. 49.

    Mui, A. M. et al. Daily visual stimulation in the critical period enhances multiple aspects of vision through BDNF-mediated pathways in the mouse retina. PLoS ONE 13, e0192435 (2018).

  50. 50.

    Prusky, G. T., Alam, N. M., Beekman, S. & Douglas, R. M. Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest. Ophthalmol. Vis. Sci. 45, 4611–4616 (2004).

  51. 51.

    Gröticke, I., Hoffmann, K. & Löscher, W. Behavioral alterations in a mouse model of temporal lobe epilepsy induced by intrahippocampal injection of kainate. Exp. Neurol. 213, 71–83 (2008).

  52. 52.

    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

Download references


The Heinrich Pette Institute, Leibniz Institute for Experimental Virology is supported by the Free and Hanseatic City of Hamburg and the Federal Ministry of Health. This study was supported by the Federal Ministry of Health (G.G.), the German Research Center for Infection (DZIF) (G.G.), the Niedersachsen-Research Network on Neuroinfectiology (N-RENNT) of the Ministry of Science and Culture of Lower Saxony, Germany (W.B., W.L.) and the German Federal Ministry of Education and Research (Infrafrontier grant 01KX1012) (M.H.A.). F.C.d.A. is supported by Deutsche Forschungsgemeinschaft (DFG) Grant (FOR 2419, CA1495/1-1 and CA 1495/4-1), ERA-NET Neuron Grant (Bundesministerium für Bildung und Forschung, BMBF, 01EW1410 ZMNH AN B1), Landesforschungsförderung Hamburg (Z-AN LF) and University Medical Center Hamburg-Eppendorf (UKE). R.B. is supported by the Deutsche Forschungsgemeinschaft (BA 1505/8-1). We are grateful for the excellent technical contribution of all staff at the technology platform small animal models of the Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg and the technical staff of the Department of Pathology, University of Veterinary Medicine, Hannover. We thank T. Andreas from the Department of Obstetrics and Fetal Medicine at the University Medical Center Hamburg-Eppendorf for his excellent technical support with the preparation of pregnant mice. We thank P. Pruunsild and H. Bading, Department of Neurobiology, Interdisciplinary Center for Neurosciences at Heidelberg University for providing human NPCs. We thank U. Markert, Department of Obstetrics, Placenta-Lab, University Hospital Jena for providing the human placental cells.

Author information


  1. Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany

    • Stephanie Stanelle-Bertram
    • , Kerstin Walendy-Gnirß
    • , Thomas Speiseder
    • , Swantje Thiele
    • , Ivy Asantewaa Asante
    • , Carola Dreier
    • , Nancy Mounogou Kouassi
    • , Annette Preuß
    • , Gundula Pilnitz-Stolze
    • , Ursula Müller
    • , Stefanie Thanisch
    •  & Gülsah Gabriel
  2. Neuronal Development, Center for Molecular Neurobiology Hamburg (ZNMH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany

    • Melanie Richter
    • , Robin Scharrenberg
    •  & Froylan Calderon de Anda
  3. Research Group for Behavioral Biology, Center for Molecular Neurobiology Hamburg (ZNMH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany

    • Vanessa Kraus
    • , Ronja Dörk
    • , Lynn Schau
    •  & Fabio Morellini
  4. Department of Pathology, University of Veterinary Medicine, Hannover, Germany

    • Vanessa Herder
    • , Ingo Gerhauser
    • , Vanessa Maria Pfankuche
    •  & Wolfgang Baumgärtner
  5. Center of Systems Neuroscience, Hannover, Germany

    • Vanessa Herder
    • , Vanessa Maria Pfankuche
    •  & Wolfgang Baumgärtner
  6. Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany

    • Christopher Käufer
    • , Inken Waltl
    •  & Wolfgang Löscher
  7. Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany

    • Thais Moraes
    •  & Ralf Bartenschlager
  8. Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany

    • Julie Sellau
    • , Stefan Hoenow
    • , Jonas Schmidt-Chanasit
    • , Stephanie Jansen
    • , Daniel Cadar
    • , Hanna Lotter
    •  & Martin Gabriel
  9. German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany

    • Jonas Schmidt-Chanasit
    •  & Gülsah Gabriel
  10. Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

    • Benjamin Schattling
    •  & Manuel A. Friese
  11. Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

    • Harald Ittrich
  12. Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

    • Udo Bartsch
  13. Institute for Clinical and Laboratory Chemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

    • Thomas Renné
  14. Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

    • Petra Arck
  15. University of Helsinki and Helsinki University Hospital, Helsinki, Finland

    • Olli Vapalahti
  16. Tropical Pathology and Infectious Disease Association, Cusco, Peru

    • Sany Benites
    •  & Lane Rolling
  17. Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany

    • Sabine M. Hölter
    •  & Oana Amarie
  18. German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany

    • Sabine M. Hölter
    • , Oana Amarie
    • , Helmut Fuchs
    •  & Martin Hrabe de Angelis
  19. Chair of Experimental Genetics, School of Life Science Weihenstephan, Technical University of Munich, Freising, Germany

    • Martin Hrabe de Angelis
  20. German Center for Diabetes Research (DZD), Neuherberg, Germany

    • Martin Hrabe de Angelis
  21. Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany

    • Gülsah Gabriel
  22. University of Veterinary Medicine, Hannover, Germany

    • Gülsah Gabriel


  1. Search for Stephanie Stanelle-Bertram in:

  2. Search for Kerstin Walendy-Gnirß in:

  3. Search for Thomas Speiseder in:

  4. Search for Swantje Thiele in:

  5. Search for Ivy Asantewaa Asante in:

  6. Search for Carola Dreier in:

  7. Search for Nancy Mounogou Kouassi in:

  8. Search for Annette Preuß in:

  9. Search for Gundula Pilnitz-Stolze in:

  10. Search for Ursula Müller in:

  11. Search for Stefanie Thanisch in:

  12. Search for Melanie Richter in:

  13. Search for Robin Scharrenberg in:

  14. Search for Vanessa Kraus in:

  15. Search for Ronja Dörk in:

  16. Search for Lynn Schau in:

  17. Search for Vanessa Herder in:

  18. Search for Ingo Gerhauser in:

  19. Search for Vanessa Maria Pfankuche in:

  20. Search for Christopher Käufer in:

  21. Search for Inken Waltl in:

  22. Search for Thais Moraes in:

  23. Search for Julie Sellau in:

  24. Search for Stefan Hoenow in:

  25. Search for Jonas Schmidt-Chanasit in:

  26. Search for Stephanie Jansen in:

  27. Search for Benjamin Schattling in:

  28. Search for Harald Ittrich in:

  29. Search for Udo Bartsch in:

  30. Search for Thomas Renné in:

  31. Search for Ralf Bartenschlager in:

  32. Search for Petra Arck in:

  33. Search for Daniel Cadar in:

  34. Search for Manuel A. Friese in:

  35. Search for Olli Vapalahti in:

  36. Search for Hanna Lotter in:

  37. Search for Sany Benites in:

  38. Search for Lane Rolling in:

  39. Search for Martin Gabriel in:

  40. Search for Wolfgang Baumgärtner in:

  41. Search for Fabio Morellini in:

  42. Search for Sabine M. Hölter in:

  43. Search for Oana Amarie in:

  44. Search for Helmut Fuchs in:

  45. Search for Martin Hrabe de Angelis in:

  46. Search for Wolfgang Löscher in:

  47. Search for Froylan Calderon de Anda in:

  48. Search for Gülsah Gabriel in:


G.G. conceived the study. S.S.-B. and G.G. designed and coordinated the experiments. S.S.-B., K.W.-G., C.D., A.P., G.P.-S., U.M. and S.Thi. performed all infection studies in mice. TST treatment of mice was performed by H.L., J.S. and S.H. S.Tha., I.A.A., T.S., N.M.K., C.D. and K.W.-G. performed the qRT–PCR assays. S.Tha., C.D., K.W.-G. and A.P. performed the hormone ELISA as well as the cytokine assays. T.R. measured the TST levels. V.H., W.B., V.M.P. and I.G. performed the histological and immunohistological examinations, TUNEL and cytokeratin staining, and the in situ hybridization and analysis. B.S. performed the Iba1 staining and respective analysis of fetal brains. H.I. performed the MRI scans on the brains of the offspring. M.R. performed Golgi staining and assisted with spine analysis. R.S. performed image acquisition, and the dendritic and spine analyses. F.C.d.A. coordinated the brain analysis. U.B. performed the immunohistochemical analyses of retinas. T.M. and R.B. performed the ZIKV replication kinetics in cell culture. Histopathological findings were analysed and discussed by P.A., M.A.F., V.H., I.G., V.M.P. and W.B. S.J. and T.S. measured viral IgG and IgM titres. D.C. performed the phylogenetic analysis. S.M.H., O.A., F.M., V.K., R.D., L.S., W.L., I.W. and C.K. performed and/or analysed the behavioural experiments. H.F. and M.H.d.A. coordinated and conceived the animal phenotypic tests. S.B. and L.R. were responsible for the recruitment of the mother–child cohort in Iquitos, Peru and for the qRT–PCR analysis of patient sera. J.S.-C., O.V. and M.G. provided material, analysed the data and discussed the study. S.S.-B. and G.G. wrote the manuscript. All authors revised the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Gülsah Gabriel.

Supplementary information

  1. Supplementary Information

    Supplementary Tables 1–3, Supplementary Figures 1–13

  2. Reporting Summary

About this article

Publication history