Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Male offspring born to mildly ZIKV-infected mice are at risk of developing neurocognitive disorders in adulthood

Abstract

Congenital Zika virus (ZIKV) syndrome may cause fetal microcephaly in ~1% of affected newborns. Here, we investigate whether the majority of clinically inapparent newborns might suffer from long-term health impairments not readily visible at birth. Infection of immunocompetent pregnant mice with high-dose ZIKV caused severe offspring phenotypes, such as fetal death, as expected. By contrast, low-dose (LD) maternal ZIKV infection resulted in reduced fetal birth weight but no other obvious phenotypes. Male offspring born to LD ZIKV-infected mothers had increased testosterone (TST) levels and were less likely to survive in utero infection compared to their female littermates. Males also presented an increased number of immature neurons in apical and basal hippocampal dendrites, while female offspring had immature neurons in basal dendrites only. Moreover, male offspring with high but not very high (storm) TST levels were more likely to suffer from learning and memory impairments compared to females. Future studies are required to understand the impact of TST on neuropathological and neurocognitive impairments in later life. In summary, increased sex-specific vigilance is required in countries with high ZIKV prevalence, where impaired neurodevelopment may be camouflaged by a healthy appearance at birth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Maternal ZIKV pathogenesis in immunocompetent allogeneic pregnant mice.
Fig. 2: Vertical ZIKV transmission.
Fig. 3: Reproductive outcome.
Fig. 4: TST levels of pregnant women and newborns.
Fig. 5: Apical and basal dendrites of adult male and female offspring.
Fig. 6: Assessment of spatial learning and memory of adult male and female offspring.

Similar content being viewed by others

Data availability

Accession numbers of the ZIKV strains used to perform the phylogenetic analysis are indicated in Supplementary Fig. 1. The data that support the findings of this study are available from the corresponding author on request.

References

  1. Dick, G. W., Kitchen, S. F. & Haddow, A. J. Zika virus. I. Isolations and serological specificity. Trans. R. Soc. Trop. Med. Hyg. 46, 509–520 (1952).

    Article  CAS  PubMed  Google Scholar 

  2. Driggers, R. W. et al. Zika virus infection with prolonged maternal viremia and fetal brain abnormalities. N. Engl. J. Med. 374, 2142–2151 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Faria, N. R. et al. Zika virus in the Americas: early epidemiological and genetic findings. Science 352, 345–349 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. França, G. V. et al. Congenital Zika virus syndrome in Brazil: a case series of the first 1501 livebirths with complete investigation. Lancet 388, 891–897 (2016).

    Article  PubMed  Google Scholar 

  5. van der Eijk, A. A. Miscarriage associated with Zika virus infection. N. Engl. J. Med. 375, 1002–1004 (2016).

    Article  PubMed  Google Scholar 

  6. Brasil, P. et al. Zika virus infection in pregnant women in Rio de Janeiro. N. Engl. J. Med. 375, 2321–2334 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cauchemez, S. et al. Association between Zika virus and microcephaly in French Polynesia, 2013–15: a retrospective study. Lancet 387, 2125–2132 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kapogiannis, B. G., Chakhtoura, N., Hazra, R. & Spong, C. Y. Bridging knowledge gaps to understand how Zika virus exposure and infection affect child development. JAMA Pediatr. 171, 478–485 (2017).

    Article  PubMed  Google Scholar 

  9. Cugola, F. R. et al. The Brazilian Zika virus strain causes birth defects in experimental models. Nature 534, 267–271 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Miner, J. J. et al. Zika virus infection during pregnancy in mice causes placental damage and fetal demise. Cell 165, 1081–1091 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, C. et al. Zika virus disrupts neural progenitor development and leads to microcephaly in mice. Cell Stem Cell 19, 120–126 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Yockey, L. J. et al. Vaginal exposure to Zika virus during pregnancy leads to fetal brain infection. Cell 166, 1247–1256 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Engels, G. et al. Pregnancy-related immune adaptation promotes the emergence of highly virulent H1N1 influenza virus strains in allogenically pregnant mice. Cell Host Microbe 21, 321–333 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Shin Yim, Y. et al. Reversing behavioural abnormalities in mice exposed to maternal inflammation. Nature 549, 482–487 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Estes, M. L. & McAllister, A. K. Maternal immune activation: implications for neuropsychiatric disorders. Science 353, 772–777 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Leuner, B. & Shors, T. J. New spines, new memories. Mol. Neurobiol. 29, 117–130 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maliqueo, M., Echiburú, B. & Crisosto, N. Sex steroids modulate uterine–placental vasculature: implications for obstetrics and neonatal outcomes. Front. Physiol. 7, 152 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shors, T. J. & Miesegaes, G. Testosterone in utero and at birth dictates how stressful experience will affect learning in adulthood. Proc. Natl Acad. Sci. USA 99, 13955–13960 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Barbazanges, A., Piazza, P. V., Le Moal, M. & Maccari, S. Maternal glucocorticoid secretion mediates long-term effects of prenatal stress. J. Neurosci. 16, 3943–3949 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, H. et al. Zika virus infects neural progenitors in the adult mouse brain and alters proliferation. Cell Stem Cell 19, 593–598 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Coan, P. M. et al. Adaptations in placental nutrient transfer capacity to meet fetal growth demands depend on placental size in mice. J. Physiol. 586, 4567–4576 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. He, S., Allen, J. C. Jr., Malhotra, R., Østbye, T. & Tan, T. C. Association of maternal serum progesterone in early pregnancy with low birth weight and other adverse pregnancy outcomes. J. Matern. Fetal Neonatal Med. 29, 1999–2004 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Aiken, C. E. & Ozanne, S. E. Sex differences in developmental programming models. Reproduction 145, R1–R13 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Manikkam, M. et al. Fetal programming: prenatal testosterone excess leads to fetal growth retardation and postnatal catch-up growth in sheep. Endocrinology 145, 790–798 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Meikle, D. B. & Drickamer, L. C. Food availability and secondary sex ratio variation in wild and laboratory house mice (Mus musculus). J. Reprod. Fertil. 78, 587–591 (1986).

    Article  CAS  PubMed  Google Scholar 

  26. Nguyen, T. V. et al. Sex-specific associations of testosterone with prefrontal-hippocampal development and executive function. Psychoneuroendocrinology 76, 206–217 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Miyamoto, A. et al. Microglia contact induces synapse formation in developing somatosensory cortex. Nat. Commun. 7, 12540 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Miner, J. J. et al. Zika virus infection in mice causes panuveitis with shedding of virus in tears. Cell Rep. 16, 3208–3218 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van den Pol, A. N., Mao, G., Yang, Y., Ornaghi, S. & Davis, J. N. Zika virus targeting in the developing brain. J. Neurosci. 37, 2161–2175 2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Anacker, C. & Hen, R. Adult hippocampal neurogenesis and cognitive flexibility—linking memory and mood. Nat. Rev. Neurosci. 18, 335–346 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. D’Hooge, R. & De Deyn, P. P. Applications of the Morris water maze in the study of learning and memory. Brain Res. Rev. 36, 60–90 (2001).

    Article  PubMed  Google Scholar 

  32. Janus, C. Search strategies used by APP transgenic mice during navigation in the Morris water maze. Learn. Mem. 11, 337–346 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Brody, D. L. & Holtzman, D. M. Morris water maze search strategy analysis in PDAPP mice before and after experimental traumatic brain injury. Exp. Neurol. 197, 330–340 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Lee, A. S., Duman, R. S. & Pittenger, C. A double dissociation revealing bidirectional competition between striatum and hippocampus during learning. Proc. Natl Acad. Sci. USA 105, 17163–17168 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sabuncu, M. R. et al. Morphometricity as a measure of the neuroanatomical signature of a trait. Proc. Natl Acad. Sci. USA 113, E5749–E5756 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Celec, P., Ostatníková, D. & Hodosy, J. On the effects of testosterone on brain behavioral functions. Front. Neurosci. 9, 12 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Adams Waldorf, K. M. et al. Congenital Zika virus infection as a silent pathology with loss of neurogenic output in the fetal brain. Nat. Med. 24, 368–374 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Russell, P. K., Udomsakdi, S. & Halstead, S. B. Antibody response in dengue and dengue hemorrhagic fever. Jpn. J. Med. Sci. Biol. 20, 103–108 (1967).

    Article  PubMed  Google Scholar 

  39. Styer, L. M. et al. Mosquitoes inoculate high doses of West Nile virus as they probe and feed on live hosts. PLoS Pathog. 3, 1262–1270 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Croy, B. A., Yamada, A. T., DeMayo, F. J. & Adamson, S. L. The Guide to Investigation of Mouse Pregnancy (Academic, San Diego, CA, 2014).

  41. Tappe, D. et al. Ross River virus infection in a traveller returning from northern Australia. Med. Microbiol. Immunol. 198, 271–273 (2009).

    Article  PubMed  Google Scholar 

  42. Solano, M. E., Thiele, K., Kowal, M. K. & Arck, P. C. Identification of suitable reference genes in the mouse placenta. Placenta 39, 7–15 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Mu, J., Slevin, J. C., Qu, D., McCormick, S. & Adamson, S. L. In vivo quantification of embryonic and placental growth during gestation in mice using micro-ultrasound. Reprod. Biol. Endocrinol. 6, 34 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Paxinos, G. & Franklin, K. B. J. Paxinos and Franklin’s the Mouse Brain in Stereotaxic Coordinates 4th edn (Elsevier, Amsterdam, 2012).

  45. Risher, W. C., Ustunkaya, T., Singh Alvarado, J. & Eroglu, C. Rapid Golgi analysis method for efficient and unbiased classification of dendritic spines. PLoS ONE 9, e107591 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ferreira, T. A. et al. Neuronal morphometry directly from bitmap images. Nat. Methods 11, 982–984 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hölter, S. M. et al. Tests for anxiety-related behavior in mice. Curr. Protoc. Mouse Biol. 5, 291–309 (2015).

    Article  PubMed  Google Scholar 

  48. Hölter, S. M. et al. Assessing cognition in mice. Curr. Protoc. Mouse Biol. 5, 331–358 (2015).

    Article  PubMed  Google Scholar 

  49. Mui, A. M. et al. Daily visual stimulation in the critical period enhances multiple aspects of vision through BDNF-mediated pathways in the mouse retina. PLoS ONE 13, e0192435 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Prusky, G. T., Alam, N. M., Beekman, S. & Douglas, R. M. Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest. Ophthalmol. Vis. Sci. 45, 4611–4616 (2004).

    Article  PubMed  Google Scholar 

  51. Gröticke, I., Hoffmann, K. & Löscher, W. Behavioral alterations in a mouse model of temporal lobe epilepsy induced by intrahippocampal injection of kainate. Exp. Neurol. 213, 71–83 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Heinrich Pette Institute, Leibniz Institute for Experimental Virology is supported by the Free and Hanseatic City of Hamburg and the Federal Ministry of Health. This study was supported by the Federal Ministry of Health (G.G.), the German Research Center for Infection (DZIF) (G.G.), the Niedersachsen-Research Network on Neuroinfectiology (N-RENNT) of the Ministry of Science and Culture of Lower Saxony, Germany (W.B., W.L.) and the German Federal Ministry of Education and Research (Infrafrontier grant 01KX1012) (M.H.A.). F.C.d.A. is supported by Deutsche Forschungsgemeinschaft (DFG) Grant (FOR 2419, CA1495/1-1 and CA 1495/4-1), ERA-NET Neuron Grant (Bundesministerium für Bildung und Forschung, BMBF, 01EW1410 ZMNH AN B1), Landesforschungsförderung Hamburg (Z-AN LF) and University Medical Center Hamburg-Eppendorf (UKE). R.B. is supported by the Deutsche Forschungsgemeinschaft (BA 1505/8-1). We are grateful for the excellent technical contribution of all staff at the technology platform small animal models of the Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg and the technical staff of the Department of Pathology, University of Veterinary Medicine, Hannover. We thank T. Andreas from the Department of Obstetrics and Fetal Medicine at the University Medical Center Hamburg-Eppendorf for his excellent technical support with the preparation of pregnant mice. We thank P. Pruunsild and H. Bading, Department of Neurobiology, Interdisciplinary Center for Neurosciences at Heidelberg University for providing human NPCs. We thank U. Markert, Department of Obstetrics, Placenta-Lab, University Hospital Jena for providing the human placental cells.

Author information

Authors and Affiliations

Authors

Contributions

G.G. conceived the study. S.S.-B. and G.G. designed and coordinated the experiments. S.S.-B., K.W.-G., C.D., A.P., G.P.-S., U.M. and S.Thi. performed all infection studies in mice. TST treatment of mice was performed by H.L., J.S. and S.H. S.Tha., I.A.A., T.S., N.M.K., C.D. and K.W.-G. performed the qRT–PCR assays. S.Tha., C.D., K.W.-G. and A.P. performed the hormone ELISA as well as the cytokine assays. T.R. measured the TST levels. V.H., W.B., V.M.P. and I.G. performed the histological and immunohistological examinations, TUNEL and cytokeratin staining, and the in situ hybridization and analysis. B.S. performed the Iba1 staining and respective analysis of fetal brains. H.I. performed the MRI scans on the brains of the offspring. M.R. performed Golgi staining and assisted with spine analysis. R.S. performed image acquisition, and the dendritic and spine analyses. F.C.d.A. coordinated the brain analysis. U.B. performed the immunohistochemical analyses of retinas. T.M. and R.B. performed the ZIKV replication kinetics in cell culture. Histopathological findings were analysed and discussed by P.A., M.A.F., V.H., I.G., V.M.P. and W.B. S.J. and T.S. measured viral IgG and IgM titres. D.C. performed the phylogenetic analysis. S.M.H., O.A., F.M., V.K., R.D., L.S., W.L., I.W. and C.K. performed and/or analysed the behavioural experiments. H.F. and M.H.d.A. coordinated and conceived the animal phenotypic tests. S.B. and L.R. were responsible for the recruitment of the mother–child cohort in Iquitos, Peru and for the qRT–PCR analysis of patient sera. J.S.-C., O.V. and M.G. provided material, analysed the data and discussed the study. S.S.-B. and G.G. wrote the manuscript. All authors revised the manuscript.

Corresponding author

Correspondence to Gülsah Gabriel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Supplementary Figures 1–13

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanelle-Bertram, S., Walendy-Gnirß, K., Speiseder, T. et al. Male offspring born to mildly ZIKV-infected mice are at risk of developing neurocognitive disorders in adulthood. Nat Microbiol 3, 1161–1174 (2018). https://doi.org/10.1038/s41564-018-0236-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0236-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing