Article | Published:

In vivo TssA proximity labelling during type VI secretion biogenesis reveals TagA as a protein that stops and holds the sheath

Nature Microbiologyvolume 3pages13041313 (2018) | Download Citation

Abstract

The type VI secretion system (T6SS) is a multiprotein weapon used by bacteria to destroy competitor cells. The T6SS contractile sheath wraps an effector-loaded syringe that is injected into the target cell. This tail structure assembles onto the baseplate that is docked to the membrane complex. In enteroaggregative Escherichia coli, TssA plays a central role at each stage of the T6SS assembly pathway by stabilizing the baseplate and coordinating the polymerization of the tail. Here we adapted an assay based on APEX2-dependent biotinylation to identify the proximity partners of TssA in vivo. By using stage-blocking mutations, we define the temporal contacts of TssA during T6SS biogenesis. This proteomic mapping approach also revealed an additional partner of TssA, TagA. We show that TagA is a cytosolic protein tightly associated with the membrane. Analyses of sheath dynamics further demonstrate that TagA captures the distal end of the sheath to stop its polymerization and to maintain it under the extended conformation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

Excel spradsheets with the raw mass-spectrometry data have been provided as Supplementary Datasheets 19. Plasmid pKD4-Nter-APEX2 has been deposited in the Addgene plasmid repository under accession number 112868. All data that support the findings of this study are available from the corresponding author on request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Basler, M., Pilhofer, M., Henderson, G. P., Jensen, G. J. & Mekalanos, J. J. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483, 182–186 (2012).

  2. 2.

    Brunet, Y. R., Espinosa, L., Harchouni, S., Mignot, T. & Cascales, E. Imaging type VI secretion-mediated bacterial killing. Cell Rep. 3, 36–41 (2013).

  3. 3.

    Basler, M. Type VI secretion system: secretion by a contractile nanomachine. Phil. Trans. R. Soc. B 370, 20150021 (2015).

  4. 4.

    Zoued, A. et al. Architecture and assembly of the type VI secretion system. Biochim. Biophys. Acta 1843, 1664–1673 (2014).

  5. 5.

    Durand, E., Cambillau, C., Cascales, E. & Journet, L. VgrG, Tae, Tle, and beyond: the versatile arsenal of type VI secretion effectors. Trends Microbiol. 22, 498–507 (2014).

  6. 6.

    Ho, B. T., Dong, T. G. & Mekalanos, J. J. A view to a kill: the bacterial type VI secretion system. Cell Host Microbe 15, 9–21 (2014).

  7. 7.

    Cianfanelli, F. R., Monlezun, L. & Coulthurst, S. J. Aim, load, fire: the type VI secretion system, a bacterial nanoweapon. Trends Microbiol. 24, 51–62 (2016).

  8. 8.

    Brackmann, M., Nazarov, S., Wang, J. & Basler, M. Using force to punch holes: mechanics of contractile nanomachines. Trends Cell Biol. 27, 623–632 (2017).

  9. 9.

    Russell, A. B., Peterson, S. B. & Mougous, J. D. Type VI secretion system effectors: poisons with a purpose. Nat. Rev. Microbiol. 12, 137–148 (2014).

  10. 10.

    Alcoforado Diniz, J., Liu, Y. C. & Coulthurst, S. J. Molecular weaponry: diverse effectors delivered by the type VI secretion system. Cell. Microbiol. 17, 1742–1751 (2015).

  11. 11.

    Chassaing, B. & Cascales, E. Antibacterial weapons: targeted destruction in the microbiota. Trends Microbiol. 26, 329–338 (2018).

  12. 12.

    Hachani, A., Wood, T. E. & Filloux, A. Type VI secretion and anti-host effectors. Curr. Opin. Microbiol. 29, 81–93 (2016).

  13. 13.

    Ryu, C. M. Against friend and foe: type 6 effectors in plant-associated bacteria. J. Microbiol. 53, 201–208 (2015).

  14. 14.

    Si, M. et al. The type VI secretion system engages a redox-regulated dual-functional heme transporter for zinc acquisition. Cell Rep. 20, 949–959 (2017).

  15. 15.

    Aschtgen, M. S., Gavioli, M., Dessen, A., Lloubès, R. & Cascales, E. The SciZ protein anchors the enteroaggregative Escherichia coli type VI secretion system to the cell wall. Mol. Microbiol. 75, 886–899 (2010).

  16. 16.

    Shneider, M. M. et al. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature 500, 350–353 (2013).

  17. 17.

    Weber, B. S. et al. Genetic dissection of the type VI secretion system in Acinetobacter and identification of a novel peptidoglycan hydrolase, TagX, required for its biogenesis. mBio 7, e01253–16 (2016).

  18. 18.

    Zoued, A. et al. Priming and polymerization of a bacterial contractile tail structure. Nature 531, 59–63 (2016).

  19. 19.

    Aschtgen, M. S., Bernard, C. S., de Bentzmann, S., Lloubès, R., & Cascales, E. SciN is an outer membrane lipoprotein required for type VI secretion in enteroaggregative Escherichia coli.J. Bacteriol. 190, 7523–7531 (2008).

  20. 20.

    Felisberto-Rodrigues, C. et al. Towards a structural comprehension of bacterial type VI secretion systems: characterization of the TssJ-TssM complex of an Escherichia coli pathovar. PLoS Pathog. 7, e1002386 (2011).

  21. 21.

    Durand, E. et al. Biogenesis and structure of a type VI secretion membrane core complex. Nature 523, 555–560 (2015).

  22. 22.

    Santin, Y. G. & Cascales, E. Domestication of a housekeeping transglycosylase for assembly of a Type VI secretion system. EMBO Rep. 18, 138–149 (2017).

  23. 23.

    Zoued, A. et al. TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the type VI secretion system. J. Biol. Chem. 288, 27031–27041 (2013).

  24. 24.

    English, G., Byron, O., Cianfanelli, F. R., Prescott, A. R. & Coulthurst, S. J. Biochemical analysis of TssK, a core component of the bacterial Type VI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK-TssFG subcomplex. Biochem. J. 461, 291–304 (2014).

  25. 25.

    Brunet, Y. R., Zoued, A., Boyer, F., Douzi, B. & Cascales, E. The type VI secretion TssEFGK-VgrG phage-like baseplate is recruited to the TssJLM membrane complex via multiple contacts and serves as assembly platform for tail tube/sheath polymerization. PLoS Genet. 11, e1005545 (2015).

  26. 26.

    Taylor, N. M. et al. Structure of the T4 baseplate and its function in triggering sheath contraction. Nature 533, 346–352 (2016).

  27. 27.

    Leiman, P. G. et al. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc. Natl Acad. Sci. USA 106, 4154–4159 (2009).

  28. 28.

    Büttner, C. R., Wu, Y., Maxwell, K. L. & Davidson, A. R. Baseplate assembly of phage Mu: defining the conserved core components of contractile-tailed phages and related bacterial systems. Proc. Natl Acad. Sci. USA 113, 10174–10179 (2016).

  29. 29.

    Nguyen, V. S. et al. Type VI secretion TssK baseplate protein exhibits structural similarity with phage receptor-binding proteins and evolved to bind the membrane complex. Nat. Microbiol. 2, 17103 (2017).

  30. 30.

    Nazarov, S. et al. Cryo-EM reconstruction of type VI secretion system baseplate and sheath distal end. EMBO J. 37, e97103 (2018).

  31. 31.

    Logger, L., Aschtgen, M. S., Guérin, M., Cascales, E. & Durand, E. Molecular dissection of the interface between the type VI secretion TssM cytoplasmic domain and the TssG baseplate component. J. Mol. Biol. 428, 4424–4437 (2016).

  32. 32.

    Zoued, A. et al. Structure-function analysis of the TssL cytoplasmic domain reveals a new interaction between the type VI secretion baseplate and membrane complexes. J. Mol. Biol. 428, 4413–4423 (2016).

  33. 33.

    Brunet, Y. R., Hénin, J., Celia, H. & Cascales, E. Type VI secretion and bacteriophage tail tubes share a common assembly pathway. EMBO Rep. 15, 315–321 (2014).

  34. 34.

    Kudryashev, M. et al. Structure of the type VI secretion system contractile sheath. Cell 160, 952–962 (2015).

  35. 35.

    Wang, J. et al. Cryo-EM structure of the extended type VI secretion system sheath-tube complex. Nat. Microbiol. 2, 1507–1512 (2017).

  36. 36.

    Zoued, A. et al. TssA: the cap protein of the type VI secretion tail. Bioessays 39, 00262 (2017).

  37. 37.

    Vettiger, A., Winter, J., Lin, L. & Basler, M. The type VI secretion system sheath assembles at the end distal from the membrane anchor. Nat. Commun. 8, 16088 (2017).

  38. 38.

    Lam, S. S. et al. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat. Methods 12, 51–54 (2015).

  39. 39.

    Lobingier, B. T. et al. An approach to spatiotemporally resolve protein interaction networks in living cells. Cell 169, 350–360 (2017).

  40. 40.

    Rhee, H. W. et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328–1331 (2013).

  41. 41.

    Hung, V. et al. Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging. Mol. Cell 55, 332–341 (2014).

  42. 42.

    Hung, V. et al. Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2. Nat. Protoc. 11, 456–475 (2016).

  43. 43.

    Lee, S. Y. et al. APEX fingerprinting reveals the subcellular localization of proteins of interest. Cell Rep. 15, 1837–1847 (2016).

  44. 44.

    Hung, V. et al. Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation. eLife 6, e24463 (2017).

  45. 45.

    Paek, J. et al. Multidimensional tracking of GPCR signaling via peroxidase-catalyzed proximity labeling. Cell 169, 338–349 (2017).

  46. 46.

    Rucks, E. A., Olson, M. G., Jorgenson, L. M., Srinivasan, R. R. & Ouellette, S. P. Development of a proximity labeling system to map the Chlamydia trachomatis inclusion membrane. Front. Cell. Infect. Microbiol. 7, 40 (2017).

  47. 47.

    Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

  48. 48.

    Chen, Y. L. & Hu, N. T. Function-related positioning of the type II secretion ATPase of Xanthomonas campestris pv. campestris. PLoS ONE 8, e59123 (2013).

  49. 49.

    Py, B., Loiseau, L. & Barras, F. An inner membrane platform in the type II secretion machinery of Gram-negative bacteria. EMBO Rep. 2, 244–248 (2001).

  50. 50.

    Py, B., Loiseau, L. & Barras, F. Assembly of the type II secretion machinery of Erwinia chrysanthemi: direct interaction and associated conformational change between OutE, the putative ATP-binding component and the membrane protein OutL. J. Mol. Biol. 289, 659–670 (1999).

  51. 51.

    Abendroth, J., Murphy, P., Sandkvist, M., Bagdasarian, M. & Hol, W. G. The X-ray structure of the type II secretion system complex formed by the N-terminal domain of EpsE and the cytoplasmic domain of EpsL of Vibrio cholerae. J. Mol. Biol. 348, 845–855 (2005).

  52. 52.

    Arts, J. et al. Interaction domains in the Pseudomonas aeruginosa type II secretory apparatus component XcpS (GspF). Microbiology 153, 1582–1592 (2007).

  53. 53.

    Zheng, J., Ho, B. & Mekalanos, J. J. Genetic analysis of anti-amoebae and anti-bacterial activities of the type VI secretion system in Vibrio cholerae. PLoS ONE 6, e23876 (2011).

  54. 54.

    Planamente, S. et al. TssA forms a gp6-like ring attached to the type VI secretion sheath. EMBO J. 35, 1613–1627 (2016).

  55. 55.

    Brunet, Y. R., Bernard, C. S., Gavioli, M., Lloubès, R. & Cascales, E. An epigenetic switch involving overlapping fur and DNA methylation optimizes expression of a type VI secretion gene cluster. PLoS Genet. 7, e1002205 (2011).

  56. 56.

    Chaveroche, M.-K., Ghigo, J.-M. & d'Enfert, C. A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans. Nucleic Acids Res. 28, e97 (2000).

  57. 57.

    van den Ent, F. & Löwe, J. RF cloning: a restriction-free method for inserting target genes into plasmids. J. Biochem. Biophys. Methods 67, 67–74 (2006).

  58. 58.

    Karimova, G., Pidoux, J., Ullmann, A. & Ladant, D. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc. Natl Acad. Sci. USA 95, 5752–5756 (1998).

  59. 59.

    Battesti, A. & Bouveret, E. The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli. Methods 58, 325–334 (2012).

  60. 60.

    Flaugnatti, N. et al. A phospholipase A1 antibacterial type VI secretion effector interacts directly with the C-terminal domain of the VgrG spike protein for delivery. Mol. Microbiol. 99, 1099–1118 (2016).

  61. 61.

    Zaslaver, A. et al. A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat. Methods 3, 623–628 (2006).

  62. 62.

    Ducret, A., Quardokus, E. M. & Brun, Y. V. MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis. Nat. Microbiol. 1, 16077 (2016).

Download references

Acknowledgements

This work was funded by the Centre National de la Recherche Scientifique, the Aix-Marseille Université and grants from the Agence Nationale de la Recherche (ANR-14-CE14-0006-02, ANR-17-CE11-0039-01). Y.G.S. is supported by a doctoral fellowship from the French ministry of research. We thank H. Le Guenno of the IMM microscopy facility for helpful advice regarding deconvolution analyses; J. Sturgis (IMM), E. A. Rucks and S. Ouellette (University of South Dakota, Vermillion, USA) for initial discussions on biotin-dependent ligation; the members of the Cascales, Lloubès, Sturgis and Bouveret research groups for discussions, Y. A. Nadal-Sitron for encouragements and M. Ba, I. Bringer, A. Brun and O. Uderso for technical assistance.

Author contributions

Y.G.S. and E.C. designed and conceived the experiments. Y.G.S., T.D., R.L. and L.E. performed the experiments. Y.G.S. performed all of the experiments, with the help of T.D. and L.E. for fluorescence microscopy. R.L. performed the mass spectrometry analyses. E.C supervised the execution of the experiments. L.J. and E.C. provided tools. E.C. wrote the paper with contributions from Y.G.S, T.D., R.L. and L.J.

Author information

Affiliations

  1. Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, CNRS UMR7255, Aix-Marseille Université, Marseille, France

    • Yoann G. Santin
    • , Thierry Doan
    • , Laure Journet
    •  & Eric Cascales
  2. Plateforme Protéomique, Marseille Protéomique (MaP), Institut de Microbiologie de la Méditerranée, CNRS, Aix-Marseille Université, Marseille, France

    • Régine Lebrun
  3. Plateforme de biophotonique appliquée à la microbiologie, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS UMR7283, Aix-Marseille Université, Marseille, France

    • Leon Espinosa

Authors

  1. Search for Yoann G. Santin in:

  2. Search for Thierry Doan in:

  3. Search for Régine Lebrun in:

  4. Search for Leon Espinosa in:

  5. Search for Laure Journet in:

  6. Search for Eric Cascales in:

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Eric Cascales.

Supplementary information

  1. Supplementary Information

    Supplementary Tables 1–3, Supplementary Figures 1–7.

  2. Reporting Summary

  3. Supplementary Datasheet 1

    Raw mass spectrometry datasheet for 17-2 wild-type cells producing APEX2–TssA.

  4. Supplementary Datasheet 2

    Raw mass spectrometry datasheet for 17-2 wild-type cells producing APEX2–TssA (without membrane solubilization by detergent).

  5. Supplementary Datasheet 3

    Raw mass spectrometry datasheet for 17-2 wild-type cells.

  6. Supplementary Datasheet 4

    Raw mass spectrometry datasheet for 17-2 wild-type cells producing APEX2.

  7. Supplementary Datasheet 5

    Raw mass spectrometry datasheet for 17-2 wild-type cells producing APEX2–GspE.

  8. Supplementary Datasheet 6

    Raw mass spectrometry datasheet for 17-2 wild-type cells producing APEX2–GspE.

  9. Supplementary Datasheet 7

    Raw mass spectrometry datasheet for 17-2 ∆tssK cells.

  10. Supplementary Datasheet 8

    Raw mass spectrometry datasheet for 17-2 ∆tssK cells producing APEX2–TssA.

  11. Supplementary Datasheet 9

    Raw mass spectrometry datasheet for 17-2 ∆hcp cells producing APEX2–TssA.

  12. Supplementary Video 1

    Time-lapse fluorescence microscopy recording of cells.

  13. Supplementary Video 2

    Time-lapse fluorescence microscopy recording of ΔtagA cells producing TssB-sfGFP.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41564-018-0234-3