In vivo TssA proximity labelling during type VI secretion biogenesis reveals TagA as a protein that stops and holds the sheath

Abstract

The type VI secretion system (T6SS) is a multiprotein weapon used by bacteria to destroy competitor cells. The T6SS contractile sheath wraps an effector-loaded syringe that is injected into the target cell. This tail structure assembles onto the baseplate that is docked to the membrane complex. In enteroaggregative Escherichia coli, TssA plays a central role at each stage of the T6SS assembly pathway by stabilizing the baseplate and coordinating the polymerization of the tail. Here we adapted an assay based on APEX2-dependent biotinylation to identify the proximity partners of TssA in vivo. By using stage-blocking mutations, we define the temporal contacts of TssA during T6SS biogenesis. This proteomic mapping approach also revealed an additional partner of TssA, TagA. We show that TagA is a cytosolic protein tightly associated with the membrane. Analyses of sheath dynamics further demonstrate that TagA captures the distal end of the sheath to stop its polymerization and to maintain it under the extended conformation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Summary of TssA proximity partners.
Fig. 2: TagA is an accessory T6SS cytosolic component that associates with the membrane.
Fig. 3: TagA localizes at the cell quarters and binds the distal end of the sheath.
Fig. 4: TagA stops sheath elongation and maintains the sheath under the extended conformation.

Data availability

Excel spradsheets with the raw mass-spectrometry data have been provided as Supplementary Datasheets 19. Plasmid pKD4-Nter-APEX2 has been deposited in the Addgene plasmid repository under accession number 112868. All data that support the findings of this study are available from the corresponding author on request.

References

  1. 1.

    Basler, M., Pilhofer, M., Henderson, G. P., Jensen, G. J. & Mekalanos, J. J. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483, 182–186 (2012).

    CAS  Article  Google Scholar 

  2. 2.

    Brunet, Y. R., Espinosa, L., Harchouni, S., Mignot, T. & Cascales, E. Imaging type VI secretion-mediated bacterial killing. Cell Rep. 3, 36–41 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    Basler, M. Type VI secretion system: secretion by a contractile nanomachine. Phil. Trans. R. Soc. B 370, 20150021 (2015).

    Article  Google Scholar 

  4. 4.

    Zoued, A. et al. Architecture and assembly of the type VI secretion system. Biochim. Biophys. Acta 1843, 1664–1673 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    Durand, E., Cambillau, C., Cascales, E. & Journet, L. VgrG, Tae, Tle, and beyond: the versatile arsenal of type VI secretion effectors. Trends Microbiol. 22, 498–507 (2014).

    CAS  Article  Google Scholar 

  6. 6.

    Ho, B. T., Dong, T. G. & Mekalanos, J. J. A view to a kill: the bacterial type VI secretion system. Cell Host Microbe 15, 9–21 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    Cianfanelli, F. R., Monlezun, L. & Coulthurst, S. J. Aim, load, fire: the type VI secretion system, a bacterial nanoweapon. Trends Microbiol. 24, 51–62 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    Brackmann, M., Nazarov, S., Wang, J. & Basler, M. Using force to punch holes: mechanics of contractile nanomachines. Trends Cell Biol. 27, 623–632 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    Russell, A. B., Peterson, S. B. & Mougous, J. D. Type VI secretion system effectors: poisons with a purpose. Nat. Rev. Microbiol. 12, 137–148 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    Alcoforado Diniz, J., Liu, Y. C. & Coulthurst, S. J. Molecular weaponry: diverse effectors delivered by the type VI secretion system. Cell. Microbiol. 17, 1742–1751 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Chassaing, B. & Cascales, E. Antibacterial weapons: targeted destruction in the microbiota. Trends Microbiol. 26, 329–338 (2018).

    CAS  Article  Google Scholar 

  12. 12.

    Hachani, A., Wood, T. E. & Filloux, A. Type VI secretion and anti-host effectors. Curr. Opin. Microbiol. 29, 81–93 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    Ryu, C. M. Against friend and foe: type 6 effectors in plant-associated bacteria. J. Microbiol. 53, 201–208 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    Si, M. et al. The type VI secretion system engages a redox-regulated dual-functional heme transporter for zinc acquisition. Cell Rep. 20, 949–959 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    Aschtgen, M. S., Gavioli, M., Dessen, A., Lloubès, R. & Cascales, E. The SciZ protein anchors the enteroaggregative Escherichia coli type VI secretion system to the cell wall. Mol. Microbiol. 75, 886–899 (2010).

    CAS  Article  Google Scholar 

  16. 16.

    Shneider, M. M. et al. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature 500, 350–353 (2013).

    CAS  Article  Google Scholar 

  17. 17.

    Weber, B. S. et al. Genetic dissection of the type VI secretion system in Acinetobacter and identification of a novel peptidoglycan hydrolase, TagX, required for its biogenesis. mBio 7, e01253–16 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    Zoued, A. et al. Priming and polymerization of a bacterial contractile tail structure. Nature 531, 59–63 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Aschtgen, M. S., Bernard, C. S., de Bentzmann, S., Lloubès, R., & Cascales, E. SciN is an outer membrane lipoprotein required for type VI secretion in enteroaggregative Escherichia coli.J. Bacteriol. 190, 7523–7531 (2008).

    CAS  Article  Google Scholar 

  20. 20.

    Felisberto-Rodrigues, C. et al. Towards a structural comprehension of bacterial type VI secretion systems: characterization of the TssJ-TssM complex of an Escherichia coli pathovar. PLoS Pathog. 7, e1002386 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    Durand, E. et al. Biogenesis and structure of a type VI secretion membrane core complex. Nature 523, 555–560 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    Santin, Y. G. & Cascales, E. Domestication of a housekeeping transglycosylase for assembly of a Type VI secretion system. EMBO Rep. 18, 138–149 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    Zoued, A. et al. TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the type VI secretion system. J. Biol. Chem. 288, 27031–27041 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    English, G., Byron, O., Cianfanelli, F. R., Prescott, A. R. & Coulthurst, S. J. Biochemical analysis of TssK, a core component of the bacterial Type VI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK-TssFG subcomplex. Biochem. J. 461, 291–304 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    Brunet, Y. R., Zoued, A., Boyer, F., Douzi, B. & Cascales, E. The type VI secretion TssEFGK-VgrG phage-like baseplate is recruited to the TssJLM membrane complex via multiple contacts and serves as assembly platform for tail tube/sheath polymerization. PLoS Genet. 11, e1005545 (2015).

    Article  Google Scholar 

  26. 26.

    Taylor, N. M. et al. Structure of the T4 baseplate and its function in triggering sheath contraction. Nature 533, 346–352 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Leiman, P. G. et al. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc. Natl Acad. Sci. USA 106, 4154–4159 (2009).

    CAS  Article  Google Scholar 

  28. 28.

    Büttner, C. R., Wu, Y., Maxwell, K. L. & Davidson, A. R. Baseplate assembly of phage Mu: defining the conserved core components of contractile-tailed phages and related bacterial systems. Proc. Natl Acad. Sci. USA 113, 10174–10179 (2016).

    Article  Google Scholar 

  29. 29.

    Nguyen, V. S. et al. Type VI secretion TssK baseplate protein exhibits structural similarity with phage receptor-binding proteins and evolved to bind the membrane complex. Nat. Microbiol. 2, 17103 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    Nazarov, S. et al. Cryo-EM reconstruction of type VI secretion system baseplate and sheath distal end. EMBO J. 37, e97103 (2018).

    Article  Google Scholar 

  31. 31.

    Logger, L., Aschtgen, M. S., Guérin, M., Cascales, E. & Durand, E. Molecular dissection of the interface between the type VI secretion TssM cytoplasmic domain and the TssG baseplate component. J. Mol. Biol. 428, 4424–4437 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    Zoued, A. et al. Structure-function analysis of the TssL cytoplasmic domain reveals a new interaction between the type VI secretion baseplate and membrane complexes. J. Mol. Biol. 428, 4413–4423 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    Brunet, Y. R., Hénin, J., Celia, H. & Cascales, E. Type VI secretion and bacteriophage tail tubes share a common assembly pathway. EMBO Rep. 15, 315–321 (2014).

    CAS  Article  Google Scholar 

  34. 34.

    Kudryashev, M. et al. Structure of the type VI secretion system contractile sheath. Cell 160, 952–962 (2015).

    CAS  Article  Google Scholar 

  35. 35.

    Wang, J. et al. Cryo-EM structure of the extended type VI secretion system sheath-tube complex. Nat. Microbiol. 2, 1507–1512 (2017).

    CAS  Article  Google Scholar 

  36. 36.

    Zoued, A. et al. TssA: the cap protein of the type VI secretion tail. Bioessays 39, 00262 (2017).

    Article  Google Scholar 

  37. 37.

    Vettiger, A., Winter, J., Lin, L. & Basler, M. The type VI secretion system sheath assembles at the end distal from the membrane anchor. Nat. Commun. 8, 16088 (2017).

    CAS  Article  Google Scholar 

  38. 38.

    Lam, S. S. et al. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat. Methods 12, 51–54 (2015).

    CAS  Article  Google Scholar 

  39. 39.

    Lobingier, B. T. et al. An approach to spatiotemporally resolve protein interaction networks in living cells. Cell 169, 350–360 (2017).

    CAS  Article  Google Scholar 

  40. 40.

    Rhee, H. W. et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328–1331 (2013).

    CAS  Article  Google Scholar 

  41. 41.

    Hung, V. et al. Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging. Mol. Cell 55, 332–341 (2014).

    CAS  Article  Google Scholar 

  42. 42.

    Hung, V. et al. Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2. Nat. Protoc. 11, 456–475 (2016).

    CAS  Article  Google Scholar 

  43. 43.

    Lee, S. Y. et al. APEX fingerprinting reveals the subcellular localization of proteins of interest. Cell Rep. 15, 1837–1847 (2016).

    CAS  Article  Google Scholar 

  44. 44.

    Hung, V. et al. Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation. eLife 6, e24463 (2017).

    Article  Google Scholar 

  45. 45.

    Paek, J. et al. Multidimensional tracking of GPCR signaling via peroxidase-catalyzed proximity labeling. Cell 169, 338–349 (2017).

    CAS  Article  Google Scholar 

  46. 46.

    Rucks, E. A., Olson, M. G., Jorgenson, L. M., Srinivasan, R. R. & Ouellette, S. P. Development of a proximity labeling system to map the Chlamydia trachomatis inclusion membrane. Front. Cell. Infect. Microbiol. 7, 40 (2017).

    Article  Google Scholar 

  47. 47.

    Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

    CAS  Article  Google Scholar 

  48. 48.

    Chen, Y. L. & Hu, N. T. Function-related positioning of the type II secretion ATPase of Xanthomonas campestris pv. campestris. PLoS ONE 8, e59123 (2013).

    CAS  Article  Google Scholar 

  49. 49.

    Py, B., Loiseau, L. & Barras, F. An inner membrane platform in the type II secretion machinery of Gram-negative bacteria. EMBO Rep. 2, 244–248 (2001).

    CAS  Article  Google Scholar 

  50. 50.

    Py, B., Loiseau, L. & Barras, F. Assembly of the type II secretion machinery of Erwinia chrysanthemi: direct interaction and associated conformational change between OutE, the putative ATP-binding component and the membrane protein OutL. J. Mol. Biol. 289, 659–670 (1999).

    CAS  Article  Google Scholar 

  51. 51.

    Abendroth, J., Murphy, P., Sandkvist, M., Bagdasarian, M. & Hol, W. G. The X-ray structure of the type II secretion system complex formed by the N-terminal domain of EpsE and the cytoplasmic domain of EpsL of Vibrio cholerae. J. Mol. Biol. 348, 845–855 (2005).

    CAS  Article  Google Scholar 

  52. 52.

    Arts, J. et al. Interaction domains in the Pseudomonas aeruginosa type II secretory apparatus component XcpS (GspF). Microbiology 153, 1582–1592 (2007).

    CAS  Article  Google Scholar 

  53. 53.

    Zheng, J., Ho, B. & Mekalanos, J. J. Genetic analysis of anti-amoebae and anti-bacterial activities of the type VI secretion system in Vibrio cholerae. PLoS ONE 6, e23876 (2011).

    CAS  Article  Google Scholar 

  54. 54.

    Planamente, S. et al. TssA forms a gp6-like ring attached to the type VI secretion sheath. EMBO J. 35, 1613–1627 (2016).

    CAS  Article  Google Scholar 

  55. 55.

    Brunet, Y. R., Bernard, C. S., Gavioli, M., Lloubès, R. & Cascales, E. An epigenetic switch involving overlapping fur and DNA methylation optimizes expression of a type VI secretion gene cluster. PLoS Genet. 7, e1002205 (2011).

    CAS  Article  Google Scholar 

  56. 56.

    Chaveroche, M.-K., Ghigo, J.-M. & d'Enfert, C. A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans. Nucleic Acids Res. 28, e97 (2000).

    CAS  Article  Google Scholar 

  57. 57.

    van den Ent, F. & Löwe, J. RF cloning: a restriction-free method for inserting target genes into plasmids. J. Biochem. Biophys. Methods 67, 67–74 (2006).

    Article  Google Scholar 

  58. 58.

    Karimova, G., Pidoux, J., Ullmann, A. & Ladant, D. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc. Natl Acad. Sci. USA 95, 5752–5756 (1998).

    CAS  Article  Google Scholar 

  59. 59.

    Battesti, A. & Bouveret, E. The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli. Methods 58, 325–334 (2012).

    CAS  Article  Google Scholar 

  60. 60.

    Flaugnatti, N. et al. A phospholipase A1 antibacterial type VI secretion effector interacts directly with the C-terminal domain of the VgrG spike protein for delivery. Mol. Microbiol. 99, 1099–1118 (2016).

    CAS  Article  Google Scholar 

  61. 61.

    Zaslaver, A. et al. A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat. Methods 3, 623–628 (2006).

    CAS  Article  Google Scholar 

  62. 62.

    Ducret, A., Quardokus, E. M. & Brun, Y. V. MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis. Nat. Microbiol. 1, 16077 (2016).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Centre National de la Recherche Scientifique, the Aix-Marseille Université and grants from the Agence Nationale de la Recherche (ANR-14-CE14-0006-02, ANR-17-CE11-0039-01). Y.G.S. is supported by a doctoral fellowship from the French ministry of research. We thank H. Le Guenno of the IMM microscopy facility for helpful advice regarding deconvolution analyses; J. Sturgis (IMM), E. A. Rucks and S. Ouellette (University of South Dakota, Vermillion, USA) for initial discussions on biotin-dependent ligation; the members of the Cascales, Lloubès, Sturgis and Bouveret research groups for discussions, Y. A. Nadal-Sitron for encouragements and M. Ba, I. Bringer, A. Brun and O. Uderso for technical assistance.

Author contributions

Y.G.S. and E.C. designed and conceived the experiments. Y.G.S., T.D., R.L. and L.E. performed the experiments. Y.G.S. performed all of the experiments, with the help of T.D. and L.E. for fluorescence microscopy. R.L. performed the mass spectrometry analyses. E.C supervised the execution of the experiments. L.J. and E.C. provided tools. E.C. wrote the paper with contributions from Y.G.S, T.D., R.L. and L.J.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eric Cascales.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

41564_2018_234_MOESM12_ESM.mov

Time-lapse fluorescence microscopy recording of cells.

41564_2018_234_MOESM13_ESM.mov

Time-lapse fluorescence microscopy recording of ΔtagA cells producing TssB-sfGFP.

Supplementary Information

Supplementary Tables 1–3, Supplementary Figures 1–7.

Reporting Summary

Supplementary Datasheet 1

Raw mass spectrometry datasheet for 17-2 wild-type cells producing APEX2–TssA.

Supplementary Datasheet 2

Raw mass spectrometry datasheet for 17-2 wild-type cells producing APEX2–TssA (without membrane solubilization by detergent).

Supplementary Datasheet 3

Raw mass spectrometry datasheet for 17-2 wild-type cells.

Supplementary Datasheet 4

Raw mass spectrometry datasheet for 17-2 wild-type cells producing APEX2.

Supplementary Datasheet 5

Raw mass spectrometry datasheet for 17-2 wild-type cells producing APEX2–GspE.

Supplementary Datasheet 6

Raw mass spectrometry datasheet for 17-2 wild-type cells producing APEX2–GspE.

Supplementary Datasheet 7

Raw mass spectrometry datasheet for 17-2 ∆tssK cells.

Supplementary Datasheet 8

Raw mass spectrometry datasheet for 17-2 ∆tssK cells producing APEX2–TssA.

Supplementary Datasheet 9

Raw mass spectrometry datasheet for 17-2 ∆hcp cells producing APEX2–TssA.

Supplementary Video 1

Time-lapse fluorescence microscopy recording of cells.

Supplementary Video 2

Time-lapse fluorescence microscopy recording of ΔtagA cells producing TssB-sfGFP.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Santin, Y.G., Doan, T., Lebrun, R. et al. In vivo TssA proximity labelling during type VI secretion biogenesis reveals TagA as a protein that stops and holds the sheath. Nat Microbiol 3, 1304–1313 (2018). https://doi.org/10.1038/s41564-018-0234-3

Download citation

Further reading