Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Murine colitis reveals a disease-associated bacteriophage community

Abstract

The dysregulation of intestinal microbial communities is associated with inflammatory bowel diseases (IBD). Studies aimed at understanding the contribution of the microbiota to inflammatory diseases have primarily focused on bacteria, yet the intestine harbours a viral component dominated by prokaryotic viruses known as bacteriophages (phages). Phage numbers are elevated at the intestinal mucosal surface and phages increase in abundance during IBD, suggesting that phages play an unidentified role in IBD. We used a sequence-independent approach for the selection of viral contigs and then applied quantitative metagenomics to study intestinal phages in a mouse model of colitis. We discovered that during colitis the intestinal phage population is altered and transitions from an ordered state to a stochastic dysbiosis. We identified phages specific to pathobiotic hosts associated with intestinal disease, whose abundances are altered during colitis. Additionally, phage populations in healthy and diseased mice overlapped with phages from healthy humans and humans with IBD. Our findings indicate that intestinal phage communities are altered during inflammatory disease, establishing a platform for investigating phage involvement in IBD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Caudovirales phage abundances are altered during T-cell-mediated colitis.
Fig. 2: Phage community alterations during colitis were identified using a curated VLP contig database.
Fig. 3: Colitic animals share fewer VLP connections relative to healthy animals.
Fig. 4: Phage taxonomy and host bacterial assignments for curated VLP contigs reveal differential abundances of phages that infect both commensals and pathobionts during colitis.
Fig. 5: VLP reads from healthy and colitic animals share identity to human-associated intestinal phages.

Similar content being viewed by others

References

  1. Abraham, C. & Cho, J. H. Inflammatory bowel disease. N. Engl. J. Med. 361, 2066–2078 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Molodecky, N. A. et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142, 46–54 (2012).

    Article  PubMed  Google Scholar 

  3. Hooper, L. V., Midtvedt, T. & Gordon, J. I. How host–microbial interactions shape the nutrient environment of the mammalian intestine. Annu. Rev. Nutr. 22, 283–307 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Barthel, M. et al. Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect. Immun. 71, 2839–2858 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ivanov, I. I. et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4, 337–349 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Reeves, A. E., Koenigsknecht, M. J., Bergin, I. L. & Young, V. B. Suppression of Clostridium difficile in the gastrointestinal tracts of germfree mice inoculated with a murine isolate from the family Lachnospiraceae. Infect. Immun. 80, 3786–3794 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sheehan, D., Moran, C. & Shanahan, F. The microbiota in inflammatory bowel disease. J. Gastroenterol. 50, 495–507 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Minot, S. et al. The human gut virome: Inter-individual variation and dynamic response to diet. Genome Res. 21, 1616–1625 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reyes, A. et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466, 334–338 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dinsdale, E. A. et al. Functional metagenomic profiling of nine biomes. Nature 452, 629–632 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Oh, J. et al. Temporal stability of the human skin microbiome. Cell 165, 854–866 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Feiner, R. et al. A new perspective on lysogeny: Prophages as active regulatory switches of bacteria. Nat. Rev. Microbiol. 13, 641–650 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Winter, S. E., Lopez, C. A. & Baumler, A. J. The dynamics of gut-associated microbial communities during inflammation. EMBO Rep. 14, 319–327 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stecher, B. The roles of inflammation, nutrient availability and the commensal microbiota in enteric pathogen infection. Microbiol. Spectr. 3, MBP-0008-2014 (2015).

  17. Banks, D. J., Lei, B. & Musser, J. M. Prophage induction and expression of prophage-encoded virulence factors in group A Streptococcus serotype M3 strain MGAS315. Infect. Immun. 71, 7079–7086 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Duerkop, B. A., Clements, C. V., Rollins, D., Rodrigues, J. L. & Hooper, L. V. A composite bacteriophage alters colonization by an intestinal commensal bacterium. Proc. Natl Acad. Sci. USA 109, 17621–17626 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Diard, M. et al. Inflammation boosts bacteriophage transfer between Salmonella spp. Science 355, 1211–1215 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, W. et al. Metagenomic analysis of microbiome in colon tissue from subjects with inflammatory bowel diseases reveals interplay of viruses and bacteria. Inflamm. Bowel Dis. 21, 1419–1427 (2015).

    PubMed  Google Scholar 

  21. Norman, J. M. et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160, 447–460 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lepage, P. et al. Dysbiosis in inflammatory bowel disease: A role for bacteriophages? Gut 57, 424–425 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Barr, J. J. et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc. Natl Acad. Sci. USA 110, 10771–10776 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ostanin, D. V. et al. T cell transfer model of chronic colitis: Concepts, considerations, and tricks of the trade. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G135–146 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Powrie, F., Correa-Oliveira, R., Mauze, S. & Coffman, R. L. Regulatory interactions between CD45RBhigh and CD45RBlow CD4+ T cells are important for the balance between protective and pathogenic cell-mediated immunity. J. Exp. Med. 179, 589–600 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Kang, D. W. et al. Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: An open-label study. Microbiome 5, 10 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Berry, D. et al. Phylotype-level 16S rRNA analysis reveals new bacterial indicators of health state in acute murine colitis. ISME J. 6, 2091–2106 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hughes, E. R. et al. Microbial respiration and formate oxidation as metabolic signatures of inflammation-associated dysbiosis. Cell Host Microbe 21, 208–219 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lupp, C. et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2, 204 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Roux, S., Emerson, J. B., Eloe-Fadrosh, E. A. & Sullivan, M. B. Benchmarking viromics: An in silico evaluation of metagenome-enabled estimates of viral community composition and diversity. PeerJ 5, e3817 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Paez-Espino, D., Pavlopoulos, G. A., Ivanova, N. N. & Kyrpides, N. C. Nontargeted virus sequence discovery pipeline and virus clustering for metagenomic data. Nat. Protoc. 12, 1673–1682 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: Mining viral signal from microbial genomic data. PeerJ 3, e985 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Paez-Espino, D. et al. IMG/VR: A database of cultured and uncultured DNA viruses and retroviruses. Nucleic Acids Res. 45, D457–D465 (2017).

    CAS  PubMed  Google Scholar 

  34. Bailly-Bechet, M., Vergassola, M. & Rocha, E. Causes for the intriguing presence of tRNAs in phages. Genome Res. 17, 1486–1495 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kristensen, D. M. et al. Orthologous gene clusters and taxon signature genes for viruses of prokaryotes. J. Bacteriol. 195, 941–950 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Paez-Espino, D. et al. Uncovering Earth’s virome. Nature 536, 425–430 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Uchiyama, J. et al. In silico analysis of AHJD-like viruses, Staphylococcus aureus phages S24-1 and S13’, and study of phage S24-1 adsorption. Microbiologyopen 3, 257–270 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Prangishvili, D., Forterre, P. & Garrett, R. A. Viruses of the Archaea: A unifying view. Nat. Rev. Microbiol. 4, 837–848 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Manrique, P. et al. Healthy human gut phageome. Proc. Natl Acad. Sci. USA 113, 10400–10405 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Govind, R., Fralick, J. A. & Rolfe, R. D. Genomic organization and molecular characterization of Clostridium difficile bacteriophage PhiCD119. J. Bacteriol. 188, 2568–2577 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mesyanzhinov, V. V. et al. The genome of bacteriophage phiKZ of Pseudomonas aeruginosa. J. Mol. Biol. 317, 1–19 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Esposito, D. et al. The complete nucleotide sequence of bacteriophage HP1 DNA. Nucleic Acids Res. 24, 2360–2368 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ferrenberg, S. et al. Changes in assembly processes in soil bacterial communities following a wildfire disturbance. ISME J. 7, 1102–1111 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lee, S. H., Sorensen, J. W., Grady, K. L., Tobin, T. C. & Shade, A. Divergent extremes but convergent recovery of bacterial and archaeal soil communities to an ongoing subterranean coal mine fire. ISME J. 11, 1447–1459 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Winter, S. E. et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 339, 708–711 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    Article  PubMed  Google Scholar 

  47. Jiang, W. et al. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci. Rep. 5, 8096 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Duplessis, M. & Moineau, S. Identification of a genetic determinant responsible for host specificity in Streptococcus thermophilus bacteriophages. Mol. Microbiol. 41, 325–336 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Holmfeldt, K., Middelboe, M., Nybroe, O. & Riemann, L. Large variabilities in host strain susceptibility and phage host range govern interactions between lytic marine phages and their Flavobacterium hosts. Appl. Environ. Microbiol. 73, 6730–6739 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Duerkop, B. A., Huo, W., Bhardwaj, P., Palmer, K. L. & Hooper, L. V. Molecular basis for lytic bacteriophage resistance in Enterococci. mBio 7, e01304–01316 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877 (1992).

    Article  CAS  PubMed  Google Scholar 

  52. Cash, H. L., Whitham, C. V., Behrendt, C. L. & Hooper, L. V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313, 1126–1130 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kleiner, M., Hooper, L. V. & Duerkop, B. A. Evaluation of methods to purify virus-like particles for metagenomic sequencing of intestinal viromes. BMC Genom. 16, 7 (2015).

    Article  CAS  Google Scholar 

  54. Roux, S., Krupovic, M., Debroas, D., Forterre, P. & Enault, F. Assessment of viral community functional potential from viral metagenomes may be hampered by contamination with cellular sequences. Open Biol. 3, 130160 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Enault, F. et al. Phages rarely encode antibiotic resistance genes: A cautionary tale for virome analyses. ISME J. 11, 237–247 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. BBMap: short read aligner and other bioinformatic tools v36.99 (Bushnell, B., 2018); https://sourceforge.net/projects/bbmap/

  57. phyloFlash v.2.0 (Gruber-Vodicka, H., Pruesse, E.A. & Seah, B., 2018); https://github.com/HRGV/phyloFlash

  58. Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–596 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Peng, Y., Leung, H. C., Yiu, S. M. & Chin, F. Y. IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Li, W. & Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 39, W29–37 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinformatics 10, 421 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Strous, M., Kraft, B., Bisdorf, R. & Tegetmeyer, H. E. The binning of metagenomic contigs for microbial physiology of mixed cultures. Front. Microbiol. 3, 410 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rho, M., Wu, Y. W., Tang, H., Doak, T. G. & Ye, Y. Diverse CRISPRs evolving in human microbiomes. PLoS Genet. 8, e1002441 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Laslett, D. & Canback, B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32, 11–16 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen, I. A. et al. IMG/M: Integrated genome and metagenome comparative data analysis system. Nucleic Acids Res. 45, D507–D516 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Edwards, R. A., McNair, K., Faust, K., Raes, J. & Dutilh, B. E. Computational approaches to predict bacteriophage–host relationships. FEMS Microbiol. Rev. 40, 258–272 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank C. Boyd, T. Leal and K. Ruhn for assistance with animals and X. Dong and F. Santoriello for bioinformatics assistance. This work was supported by NIH R01DK070855 (L.V.H.), the Howard Hughes Medical Institute (L.V.H.), NIH K01DK102436 (B.A.D.), start-up funds from the University of Colorado School of Medicine (B.A.D.), the Government of Canada’s Banting Postdoctoral Fellowship (M.K.) and the NC State Chancellor’s Faculty Excellence Program Cluster on Microbiomes and Complex Microbial Communities (M.K.). This work was partly conducted by the US Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, under contract number DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

B.A.D., M.K. and L.V.H. designed the study. B.A.D., M.K., D.P.E. and B.H. performed experiments. B.A.D., M.K., D.P.E. and B.B. performed bioinformatic analyses. B.A.D., M.K., D.P.E., W.Z., S.E.W., N.C.K. and L.V.H. analysed data. B.A.D., M.K. and L.V.H. wrote the paper with input from all of the authors.

Corresponding authors

Correspondence to Breck A. Duerkop, Manuel Kleiner or Lora V. Hooper.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–10

Reporting Summary

Supplementary Table 1

VLP contigs containing virus-like genes determined using a VPF database

Supplementary Table 2

VLP contigs determined to be phages using VirSorter

Supplementary Table 3

VLP contigs grouped into genetically related viral clusters

Supplementary Table 4

VLP reads mapped to phage genomes from NCBI

Supplementary Table 5

VLP read mapping abundances against the IMG/VR database

Supplementary Table 6

VLP reads mapped to the curated VLP contig database

Supplementary Table 7

VLP reads mapped to curated VLP contig database at day 42

Supplementary Table 8

Contigs with high read recruitment in T-cell-treated animals

Supplementary Table 9

Phage taxonomy or host assignment per contig

Supplementary Table 10

P value

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duerkop, B.A., Kleiner, M., Paez-Espino, D. et al. Murine colitis reveals a disease-associated bacteriophage community. Nat Microbiol 3, 1023–1031 (2018). https://doi.org/10.1038/s41564-018-0210-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0210-y

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology