Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A gated relaxation oscillator mediated by FrzX controls morphogenetic movements in Myxococcus xanthus

Abstract

Dynamic control of cell polarity is of critical importance for many aspects of cellular development and motility. In Myxococcus xanthus, MglA, a G protein, and MglB, its cognate GTPase-activating protein, establish a polarity axis that defines the direction of movement of the cell and that can be rapidly inverted by the Frz chemosensory system. Although vital for collective cell behaviours, how Frz triggers this switch has remained unknown. Here, we use genetics, imaging and mathematical modelling to show that Frz controls polarity reversals via a gated relaxation oscillator. FrzX, which we identify as a target of the Frz kinase, provides the gating and thus acts as the trigger for reversals. Slow relocalization of the polarity protein RomR then creates a refractory period during which another switch cannot be triggered. A secondary Frz output, FrzZ, decreases this delay, allowing rapid reversals when required. Thus, this architecture results in a highly tuneable switch that allows a wide range of reversal frequencies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pole-to-pole dynamics of the polarity proteins.
Fig. 2: A three-protein relaxation oscillator model of polarity reversals.
Fig. 3: FrzX, not RomR, is the major FrzE kinase substrate used to control the reversal cycle.
Fig. 4: FrzX-P acts at the lagging cell pole.
Fig. 5: Reversals require the action of both FrzX-P and RomR at the lagging cell pole.
Fig. 6: A gated relaxation oscillator model of the polarity-switching mechanism captures most of the experimental data.

Similar content being viewed by others

References

  1. Guzzo, M. et al. Evolution and design governing signal precision and amplification in a bacterial chemosensory pathway. PLoS Genet. 11, e1005460 (2015).

    Article  Google Scholar 

  2. Sliusarenko, O., Neu, J., Zusman, D. R. & Oster, G. Accordion waves in Myxococcus xanthus. Proc. Natl Acad. Sci. USA 103, 1534–1539 (2006).

    Article  CAS  Google Scholar 

  3. Igoshin, O. A., Goldbeter, A., Kaiser, D. & Oster, G. A biochemical oscillator explains several aspects of Myxococcus xanthus behavior during development. Proc. Natl Acad. Sci. USA 101, 15760–15765 (2004).

    Article  CAS  Google Scholar 

  4. Schumacher, D. & Søgaard-Andersen, L. Regulation of cell polarity in motility and cell division in Myxococcus xanthus. Annu. Rev. Microbiol. 71, 61–78 (2017).

    Article  CAS  Google Scholar 

  5. Chang, Y.-W. et al. Architecture of the type IVa pilus machine. Science 351, aad2001 (2016).

    Article  Google Scholar 

  6. Faure, L. M. et al. The mechanism of force transmission at bacterial focal adhesion complexes. Nature 539, 530–535 (2016).

    Article  CAS  Google Scholar 

  7. Leonardy, S. et al. Regulation of dynamic polarity switching in bacteria by a Ras-like G-protein and its cognate GAP. EMBO J. 29, 2276–2289 (2010).

    Article  CAS  Google Scholar 

  8. Mauriello, E. M. F. et al. Bacterial motility complexes require the actin‐like protein, MreB and the Ras homologue, MglA. EMBO J. 29, 315–326 (2010).

    Article  CAS  Google Scholar 

  9. Treuner-Lange, A. et al. The small G-protein MglA connects to the MreB actin cytoskeleton at bacterial focal adhesions. J. Cell Biol. 210, 243–256 (2015).

    Article  CAS  Google Scholar 

  10. Zhang, Y., Franco, M., Ducret, A. & Mignot, T. A bacterial Ras-like small GTP-binding protein and its cognate GAP establish a dynamic spatial polarity axis to control directed motility. PLoS Biol. 8, e1000430 (2010).

    Article  Google Scholar 

  11. Miertzschke, M. et al. Structural analysis of the Ras-like G protein MglA and its cognate GAP MglB and implications for bacterial polarity. EMBO J. 30, 4185–4197 (2011).

    Article  CAS  Google Scholar 

  12. Kaimer, C. & Zusman, D. R. Regulation of cell reversal frequency in Myxococcus xanthus requires the balanced activity of CheY-like domains in FrzE and FrzZ. Mol. Microbiol. 100, 379–395 (2016).

    Article  CAS  Google Scholar 

  13. Inclán, Y. F., Vlamakis, H. C. & Zusman, D. R. FrzZ, a dual CheY-like response regulator, functions as an output for the Frz chemosensory pathway of Myxococcus xanthus. Mol. Microbiol. 65, 90–102 (2007).

    Article  Google Scholar 

  14. Inclán, Y. F., Laurent, S. & Zusman, D. R. The receiver domain of FrzE, a CheA–CheY fusion protein, regulates the CheA histidine kinase activity and downstream signalling to the A- and S-motility systems of Myxococcus xanthus. Mol. Microbiol. 68, 1328–1339 (2008).

    Article  Google Scholar 

  15. Kaimer, C. & Zusman, D. R. Phosphorylation-dependent localization of the response regulator FrzZ signals cell reversals in Myxococcus xanthus. Mol. Microbiol. 88, 740–753 (2013).

    Article  CAS  Google Scholar 

  16. Leonardy, S., Freymark, G., Hebener, S., Ellehauge, E. & Søgaard-Andersen, L. Coupling of protein localization and cell movements by a dynamically localized response regulator in Myxococcus xanthus. EMBO J. 26, 4433–4444 (2007).

    Article  CAS  Google Scholar 

  17. Keilberg, D., Wuichet, K., Drescher, F. & Søgaard-Andersen, L. A response regulator interfaces between the Frz chemosensory system and the MglA/MglB GTPase/GAP module to regulate polarity in Myxococcus xanthus. PLoS Genet. 8, e1002951 (2012).

    Article  CAS  Google Scholar 

  18. Zhang, Y., Guzzo, M., Ducret, A., Li, Y.-Z. & Mignot, T. A dynamic response regulator protein modulates G-protein-dependent polarity in the bacterium Myxococcus xanthus. PLoS Genet. 8, e1002872 (2012).

    Article  CAS  Google Scholar 

  19. Bowman, G. R. et al. Oligomerization and higher-order assembly contribute to sub-cellular localization of a bacterial scaffold. Mol. Microbiol. 90, 776–795 (2013).

    Article  CAS  Google Scholar 

  20. Laloux, G. & Jacobs-Wagner, C. Spatiotemporal control of PopZ localization through cell cycle-coupled multimerization. J. Cell Biol. 201, 827–841 (2013).

    Article  CAS  Google Scholar 

  21. Skerker, J. M., Prasol, M. S., Perchuk, B. S., Biondi, E. G. & Laub, M. T. Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis. PLoS Biol. 3, e334 (2005).

    Article  Google Scholar 

  22. Thomas, S. A., Brewster, J. A. & Bourret, R. B. Two variable active site residues modulate response regulator phosphoryl group stability. Mol. Microbiol. 69, 453–465 (2008).

    Article  CAS  Google Scholar 

  23. Smith, J. G. et al. A search for amino acid substitutions that universally activate response regulators. Mol. Microbiol. 51, 887–901 (2003).

    Article  Google Scholar 

  24. Mauriello, E. M. F., Astling, D. P., Sliusarenko, O. & Zusman, D. R. Localization of a bacterial cytoplasmic receptor is dynamic and changes with cell–cell contacts. Proc. Natl Acad. Sci. USA 106, 4852–4857 (2009).

    Article  CAS  Google Scholar 

  25. Igoshin, O. A., Mogilner, A., Welch, R. D., Kaiser, D. & Oster, G. Pattern formation and traveling waves in myxobacteria: theory and modeling. Proc. Natl Acad. Sci. USA 98, 14913–14918 (2001).

    Article  CAS  Google Scholar 

  26. Igoshin, O. A., Welch, R., Kaiser, D. & Oster, G. Waves and aggregation patterns in myxobacteria. Proc. Natl Acad. Sci. USA 101, 4256–4261 (2004).

    Article  CAS  Google Scholar 

  27. Zhang, H. et al. The mechanistic basis of Myxococcus xanthus rippling behavior and its physiological role during predation. PLoS Comput. Biol. 8, e1002715 (2012).

    Article  CAS  Google Scholar 

  28. Bustamante, V. H., Martínez-Flores, I., Vlamakis, H. C. & Zusman, D. R. Analysis of the Frz signal transduction system of Myxococcus xanthus shows the importance of the conserved C-terminal region of the cytoplasmic chemoreceptor FrzCD in sensing signals. Mol. Microbiol. 53, 1501–1513 (2004).

    Article  CAS  Google Scholar 

  29. Pogue, C. B., Zhou, T. & Nan, B. PlpA, a PilZ-like protein, regulates directed motility of the bacterium Myxococcus xanthus. Mol. Microbiol. 107, 214–228 (2018).

    Article  CAS  Google Scholar 

  30. McLoon, A. L. et al. MglC, a paralog of Myxococcus xanthus GTPase-activating protein MglB, plays a divergent role in motility regulation. J. Bacteriol. 198, 510–520 (2015).

    Article  Google Scholar 

  31. Jeong, J.-Y. et al. One-step sequence- and ligation-independent cloning as a rapid and versatile cloning method for functional genomics studies. Appl. Environ. Microbiol. 78, 5440–5443 (2012).

    Article  CAS  Google Scholar 

  32. Morgenstein, R. M. et al. RodZ links MreB to cell wall synthesis to mediate MreB rotation and robust morphogenesis. Proc. Natl Acad. Sci. USA 112, 12510–12515 (2015).

    Article  CAS  Google Scholar 

  33. Ducret, A., Quardokus, E. M. & Brun, Y. V. MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis. Nat. Microbiol. 1, 16077 (2016).

    Article  CAS  Google Scholar 

  34. Sprague, B. & McNally, J. FRAP analysis of binding: proper and fitting. Trends Cell Biol. 15, 84–91 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Sogaard-Andersen and U. Gerland for discussions and V. Sourjik for comments on the manuscript. M.G. was the recipient of an ARC fellowship (DOC20140601482). E.M. is the recipient of an AMIDEX “Académie d’excellence” thesis fellowship (no. ANR-11-IDEX-0001-02). S.L. is funded by an ANR programme “BACTOCOMPASS”. T.M. is the recipient of an ERC starting grant “DOME 261105” and an ANR programme “BACTOCOMPASS”. R.V. was supported by the French Infrastructure for Integrated Structural Biology (FRISBI) ANR-10-INBS-05.

Author information

Authors and Affiliations

Authors

Contributions

M.G., S.M.M., E.M., S.L., M.H. and T.M. conceptualized the study. M.G., S.M.M., E.M., S.L., V.M., M.H. and T.M. conceptualized the methodology. M.G., S.M.M., E.M., S.L., L.M., G.B. and Y.Z. conducted the investigation. M.H. and T.M. wrote the original draft of the manuscript. M.G., S.M.M. and E.M. reviewed and edited the manuscript. M.G., S.M.M., E.M., S.L., L.E., M.H. and T.M. conducted the visualization experiments. M.H. and T.M. acquired funding. B.P.B., R.V., J.W.S. and M.V. provided resources. S.M.M. and M.H. conducted the mathematical analysis. M.H. and T.M. provided supervision.

Corresponding authors

Correspondence to Martin Howard or Tâm Mignot.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–6, Supplementary Tables 1–3, Supplementary Notes, Supplementary References.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzzo, M., Murray, S.M., Martineau, E. et al. A gated relaxation oscillator mediated by FrzX controls morphogenetic movements in Myxococcus xanthus. Nat Microbiol 3, 948–959 (2018). https://doi.org/10.1038/s41564-018-0203-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0203-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing