Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bipartite interactions, antibiotic production and biosynthetic potential of the Arabidopsis leaf microbiome

Abstract

Plants are colonized by phylogenetically diverse microorganisms that affect plant growth and health. Representative genome-sequenced culture collections of bacterial isolates from model plants, including Arabidopsis thaliana, have recently been established. These resources provide opportunities for systematic interaction screens combined with genome mining to discover uncharacterized natural products. Here, we report on the biosynthetic potential of 224 strains isolated from the A. thaliana phyllosphere. Genome mining identified more than 1,000 predicted natural product biosynthetic gene clusters (BGCs), hundreds of which are unknown compared to the MIBiG database of characterized BGCs. For functional validation, we used a high-throughput screening approach to monitor over 50,000 binary strain combinations. We observed 725 inhibitory interactions, with 26 strains contributing to the majority of these. A combination of imaging mass spectrometry and bioactivity-guided fractionation of the most potent inhibitor, the BGC-rich Brevibacillus sp. Leaf182, revealed three distinct natural product scaffolds that contribute to the observed antibiotic activity. Moreover, a genome mining-based strategy led to the isolation of a trans-acyltransferase polyketide synthase-derived antibiotic, macrobrevin, which displays an unprecedented natural product structure. Our findings demonstrate that the phyllosphere is a valuable environment for the identification of antibiotics and natural products with unusual scaffolds.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Bacillales and Pseudomonadales dominate the binary interaction network.
Fig. 2: Biosynthetic potential of the At-LSPHERE strain collection.
Fig. 3: BiG-SCAPE analysis of BGCs detected by antiSMASH in 207 genomes of the At-LSPHERE strain collection and comparison with the MIBiG database of characterized BGCs.
Fig. 4: MALDI imaging results of selected top inhibitors against different sensitive strains and antibiotics isolated from Brevibacillus sp. Leaf182.

References

  1. 1.

    Dewick, P. M. Medicinal Natural Products: A Biosynthetic Approach 3rd edn (Wiley, Chichester, 2009).

  2. 2.

    Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 79, 629–661 (2016).

    CAS  Google Scholar 

  3. 3.

    Mlot, C. Antibiotics in nature: beyond biological warfare. Science 324, 1637–1639 (2009).

    CAS  Google Scholar 

  4. 4.

    Meiser, P., Bode, H. B. & Müller, R. The unique DKxanthene secondary metabolite family from the myxobacterium Myxococcus xanthus is required for developmental sporulation. Proc. Natl Acad. Sci. USA 103, 19128–19133 (2006).

    CAS  Google Scholar 

  5. 5.

    Hawver, L. A., Jung, S. A. & Ng, W. L. Specificity and complexity in bacterial quorum-sensing systems. FEMS Microbiol. Rev. 40, 738–752 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Höfer, I. et al. Insights into the biosynthesis of hormaomycin, an exceptionally complex bacterial signaling metabolite. Chem. Biol. 18, 381–391 (2011).

    Google Scholar 

  7. 7.

    Phelan, V. V., Liu, W. T., Pogliano, K. & Dorrestein, P. C. Microbial metabolic exchange—the chemotype-to-phenotype link. Nat. Chem. Biol. 8, 26–35 (2012).

    CAS  Google Scholar 

  8. 8.

    Saha, R., Saha, N., Donofrio, R. S. & Bestervelt, L. L. Microbial siderophores: a mini review. J. Basic Microbiol. 53, 303–317 (2013).

    Google Scholar 

  9. 9.

    Wilson, M. C. et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506, 58–62 (2014).

    CAS  Google Scholar 

  10. 10.

    Lincke, T., Behnken, S., Ishida, K., Roth, M. & Hertweck, C. Closthioamide: an unprecedented polythioamide antibiotic from the strictly anaerobic bacterium Clostridium cellulolyticum. Angew. Chem. 49, 2011–2013 (2010).

    CAS  Google Scholar 

  11. 11.

    Pidot, S. J., Coyne, S., Kloss, F. & Hertweck, C. Antibiotics from neglected bacterial sources. Int. J. Med. Microbiol. 304, 14–22 (2014).

    CAS  Google Scholar 

  12. 12.

    Wilson, M. C. & Piel, J. Metagenomic approaches for exploiting uncultivated bacteria as a resource for novel biosynthetic enzymology. Chem. Biol. 20, 636–647 (2013).

    CAS  Google Scholar 

  13. 13.

    Rondon, M. R. et al. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66, 2541–2547 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Banik, J. J. & Brady, S. F. Recent application of metagenomic approaches toward the discovery of antimicrobials and other bioactive small molecules. Curr. Opin. Microbiol. 13, 603–609 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Vorholt, J. A., Vogel, C., Carlström, C. I. & Müller, D. B. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22, 142–155 (2017).

    CAS  Google Scholar 

  16. 16.

    Bai, Y. et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528, 364–369 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828–840 (2012).

    CAS  Google Scholar 

  18. 18.

    Ryffel, F. et al. Metabolic footprint of epiphytic bacteria on Arabidopsis thaliana leaves. ISME J. 10, 632–643 (2016).

    CAS  Google Scholar 

  19. 19.

    Blin, K. et al. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 45, W36–W41 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Medema, M. H. et al. Minimum information about a biosynthetic gene cluster. Nat. Chem. Biol. 11, 625–631 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Yang, S. C., Lin, C. H., Sung, C. T. & Fang, J. Y. Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front. Microbiol. 5, 241 (2014).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Helfrich, E. J. & Piel, J. Biosynthesis of polyketides by trans-AT polyketide synthases. Nat. Prod. Rep. 33, 231–316 (2016).

    CAS  Google Scholar 

  23. 23.

    Blin, K., Medema, M. H., Kottmann, R., Lee, S. Y. & Weber, T. The antiSMASH database, a comprehensive database of microbial secondary metabolite biosynthetic gene clusters. Nucleic Acids Res. 45, D555–D559 (2017).

    CAS  Google Scholar 

  24. 24.

    Hillenmeyer, M. E., Vandova, G. A., Berlew, E. E. & Charkoudian, L. K. Evolution of chemical diversity by coordinated gene swaps in type II polyketide gene clusters. Proc. Natl Acad. Sci. USA 112, 13952–13957 (2015).

    CAS  Google Scholar 

  25. 25.

    Lazos, O. et al. Biosynthesis of the putative siderophore erythrochelin requires unprecedented crosstalk between separate nonribosomal peptide gene clusters. Chem. Biol. 17, 160–173 (2010).

    CAS  Google Scholar 

  26. 26.

    Lombó, F. et al. Deciphering the biosynthesis pathway of the antitumor thiocoraline from a marine actinomycete and its expression in two Streptomyces species. ChemBioChem 7, 366–376 (2006).

    Google Scholar 

  27. 27.

    Arrebola, E. et al. Mangotoxin: a novel antimetabolite toxin produced by Pseudomonas syringae inhibiting ornithine/arginine biosynthesis. Physiol. Mol. Plant Pathol. 63, 117–127 (2003).

    CAS  Google Scholar 

  28. 28.

    Bassler, B. L. & Losick, R. Bacterially speaking. Cell 125, 237–246 (2006).

    CAS  Google Scholar 

  29. 29.

    Pandey, S. S., Patnana, P. K., Rai, R. & Chatterjee, S. Xanthoferrin, the α-hydroxycarboxylate-type siderophore of Xanthomonas campestris pv. campestris, is required for optimum virulence and growth inside cabbage. Mol. Plant Pathol. 18, 949–962 (2017).

    CAS  Google Scholar 

  30. 30.

    Barona-Gomez, F., Wong, U., Giannakopulos, A. E., Derrick, P. J. & Challis, G. L. Identification of a cluster of genes that directs desferrioxamine biosynthesis in Streptomyces coelicolor M145. J. Am. Chem. Soc. 126, 16282–16283 (2004).

    CAS  Google Scholar 

  31. 31.

    Lee, J. Y. et al. Biosynthetic analysis of the petrobactin siderophore pathway from Bacillus anthracis. J. Bacteriol. 189, 1698–1710 (2007).

    CAS  Google Scholar 

  32. 32.

    Barry, S. M. & Challis, G. L. Recent advances in siderophore biosynthesis. Curr. Opin. Chem. Biol. 13, 205–215 (2009).

    CAS  Google Scholar 

  33. 33.

    Lindow, S. E. & Brandl, M. T. Microbiology of the phyllosphere. Appl. Environ. Microbiol. 69, 1875–1883 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Lindow, S. E. & Leveau, J. H. Phyllosphere microbiology. Curr. Opin. Biotechnol. 13, 238–243 (2002).

    CAS  Google Scholar 

  35. 35.

    Schöner, T. A. et al. Aryl polyenes, a highly abundant class of bacterial natural products, are functionally related to antioxidative carotenoids. ChemBioChem 17, 247–253 (2016).

    Google Scholar 

  36. 36.

    Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Mootz, H. D. & Marahiel, M. A. The tyrocidine biosynthesis operon of Bacillus brevis: complete nucleotide sequence and biochemical characterization of functional internal adenylation domains. J. Bacteriol. 179, 6843–6850 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Gebhardt, K., Pukall, R. & Fiedler, H. P. Streptocidins A-D, novel cyclic decapeptide antibiotics produced by Streptomyces sp. Tu 6071. I. Taxonomy, fermentation, isolation and biological activities. J. Antibiot. 54, 428–433 (2001).

    CAS  Google Scholar 

  39. 39.

    Zgurskaya, H. I., Löpez, C. A. & Gnanakaran, S. Permeability barrier of Gram-negative cell envelopes and approaches to bypass it. ACS Infect. Dis. 1, 512–522 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Zhou, X. et al. Marthiapeptide A, an anti-infective and cytotoxic polythiazole cyclopeptide from a 60 L scale fermentation of the deep sea-derived Marinactinospora thermotolerans SCSIO 00652. J. Nat. Prod. 75, 2251–2255 (2012).

    CAS  Google Scholar 

  41. 41.

    Grubbs, K. J. et al. Large-scale bioinformatics analysis of Bacillus genomes uncovers conserved roles of natural products in bacterial physiology. mSystems 2, e00040-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Donia, M. S. et al. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell 158, 1402–1414 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Russel, J., Røder, H. L., Madsen, J. S., Burmølle, M. & Sørensen, S. J. Antagonism correlates with metabolic similarity in diverse bacteria. Proc. Natl Acad. Sci. USA 114, 10684–10688 (2017).

    CAS  Google Scholar 

  44. 44.

    Maida, I. et al. Antagonistic interactions between endophytic cultivable bacterial communities isolated from the medicinal plant Echinacea purpurea. Environ. Microbiol. 18, 2357–2365 (2016).

    CAS  Google Scholar 

  45. 45.

    Hassani, M. A., Durán, P. & Hacquard, S. Microbial interactions within the plant holobiont. Microbiome 6, 58 (2018).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Venturi, V. & Keel, C. Signaling in the rhizosphere. Trends Plant Sci. 21, 187–198 (2016).

    CAS  Google Scholar 

  47. 47.

    Chodkowski, J. L. & Shade, A. A synthetic community system for probing microbial interactions driven by exometabolites. mSystems 2, e00129-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Stringlis, I. A., Zhang, H., Pieterse, C. M. J., Bolton, M. D. & de Jonge, R. Microbial small molecules—weapons of plant subversion. Nat. Prod. Rep. 35, 410–433 (2018).

    CAS  Google Scholar 

  49. 49.

    Raaijmakers, J. M. & Mazzola, M. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu. Rev. Phytopathol. 50, 403–424 (2012).

    CAS  Google Scholar 

  50. 50.

    Peyraud, R. et al. Demonstration of the ethylmalonyl-CoA pathway by using 13C metabolomics. Proc. Natl Acad. Sci. USA 106, 4846–4851 (2009).

    CAS  Google Scholar 

  51. 51.

    Asnicar, F., Weingart, G., Tickle, T. L., Huttenhower, C. & Segata, N. Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ 3, e1029 (2015).

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Müller, D. B., Schubert, O. T., Rost, H., Aebersold, R. & Vorholt, J. A. Systems-level proteomics of two ubiquitous leaf commensals reveals complementary adaptive traits for phyllosphere colonization. Mol. Cell. Proteom. 15, 3256–3269 (2016).

    Google Scholar 

  53. 53.

    Yamanaka, K. et al. Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. Proc. Natl Acad. Sci. USA 111, 1957–1962 (2014).

    CAS  Google Scholar 

  54. 54.

    Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, 279–285 (2016).

    Google Scholar 

  55. 55.

    Ceniceros, A., Dijkhuizen, L., Petrusma, M. & Medema, M. H. Genome-based exploration of the specialized metabolic capacities of the genus Rhodococcus. BMC Genom. 18, 593 (2017).

    Google Scholar 

  56. 56.

    Yang, J. Y. et al. Primer on agar-based microbial imaging mass spectrometry. J. Bacteriol. 194, 6023–6028 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Ueoka, R. et al. Metabolic and evolutionary origin of actin-binding polyketides from diverse organisms. Nat. Chem. Biol. 11, 705–712 (2015).

    CAS  Google Scholar 

  58. 58.

    Durante-Rodríguez, G., de Lorenzo, V. & Martínez-García, E. The Standard European Vector Architecture (SEVA) plasmid toolkit. Methods Mol. Biol. 1149, 469–478 (2014).

    Google Scholar 

  59. 59.

    Radeck, J. et al. The Bacillus BioBrick Box: generation and evaluation of essential genetic building blocks for standardized work with Bacillus subtilis. J. Biol. Eng. 7, 29 (2013).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by SNF grant NRP72 to J.P. and J.A.V. and by European Research Council Advanced Grants (PhyMo to J.A.V. and SynPlex to J.P.).

Author information

Affiliations

Authors

Contributions

E.J.N.H., C.M.V., R.U., M.S., F.R., D.B.M., J.P. and J.A.V. designed the research. C.M.V., M.S., F.R., D.B.M. and M.K. performed binary interaction screens. E.J.N.H., C.M.V., F.R. and S.P. performed genome mining studies. C.M.V. and D.B.M. conducted statistical analyses. E.J.N.H., C.M.V. and M.S. conducted MALDI imaging experiments. E.J.N.H., C.M.V., M.S., F.R. and S.P. conducted bioassays. E.J.N.H., C.M.V., R.U., F.R. and S.P. isolated and structure-elucidated metabolites. M.S. generated Brevibacillus knockout mutants. E.J.N.H., C.M.V., D.B.M., J.P. and J.A.V. wrote the manuscript with contributions from all authors.

Corresponding authors

Correspondence to Jörn Piel or Julia A. Vorholt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–48, Supplementary Results 1, Supplementary Methods, Supplementary References.

Reporting Summary

Supplementary Table

Supplementary Tables 1–26.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Helfrich, E.J.N., Vogel, C.M., Ueoka, R. et al. Bipartite interactions, antibiotic production and biosynthetic potential of the Arabidopsis leaf microbiome. Nat Microbiol 3, 909–919 (2018). https://doi.org/10.1038/s41564-018-0200-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing