Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Escherichia coli translation strategies differ across carbon, nitrogen and phosphorus limitation conditions


For cells to grow faster they must increase their protein production rate. Microorganisms have traditionally been thought to accomplish this increase by producing more ribosomes to enhance protein synthesis capacity, leading to the linear relationship between ribosome level and growth rate observed under most growth conditions previously examined. Past studies have suggested that this linear relationship represents an optimal resource allocation strategy for each growth rate, independent of any specific nutrient state. Here we investigate protein production strategies in continuous cultures limited for carbon, nitrogen and phosphorus, which differentially impact substrate supply for protein versus nucleic acid metabolism. Unexpectedly, we find that at slow growth rates, Escherichia coli achieves the same protein production rate using three different strategies under the three different nutrient limitations. Under phosphorus (P) limitation, translation is slow due to a particularly low abundance of ribosomes, which are RNA-rich and thus particularly costly for phosphorous-limited cells. Under nitrogen (N) limitation, translation elongation is slowed by processes including ribosome stalling at glutamine codons. Under carbon (C) limitation, translation is slowed by accumulation of inactive ribosomes not bound to messenger RNA. These extra ribosomes enable rapid growth acceleration during nutrient upshift. Thus, bacteria tune ribosome usage across different limiting nutrients to enable balanced nutrient-limited growth while also preparing for future nutrient upshifts.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: RNA-to-protein ratio is both growth-rate and nutrient dependent.
Fig. 2: A macroscopic model reveals different ribosome dynamics that achieve the same growth rate.
Fig. 3: Deletion of relA disrupts translation regulation under nitrogen limitation.
Fig. 4: Extra ribosomes confer growth advantage during nutrient upshift.


  1. 1.

    You, C. et al. Coordination of bacterial proteome with metabolism by cyclic AMP signalling. Nature 500, 301–306 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Li, G.-W., Burkhardt, D., Gross, C. & Weissman, J. S. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157, 624–635 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Scott, M., Klumpp, S., Mateescu, E. M. & Hwa, T. Emergence of robust growth laws from optimal regulation of ribosome synthesis. Mol. Syst. Biol. 10, 747–747 (2014).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Giordano, N., Mairet, F., Gouzé, J.-L., Geiselmann, J. & de Jong, H. Dynamical allocation of cellular resources as an optimal control problem: novel insights into microbial growth strategies. PLoS Comput. Biol. 12, e1004802 (2016).

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Dennis, P. P. & Bremer, H. Modulation of chemical composition and other parameters of the cell at different exponential growth rates. EcoSal Plus (2008).

  6. 6.

    Neidhardt, F. C. & Magasanik, B. Studies on the role of ribonucleic acid in the growth of bacteria. Biochim. Biophys. Acta 42, 99–116 (1960).

    CAS  Google Scholar 

  7. 7.

    Baracchini, E. & Bremer, H. Determination of synthesis rate and lifetime of bacterial mRNAs. Anal. Biochem. 167, 245–260 (1987).

    CAS  Google Scholar 

  8. 8.

    Schaechter, M., Maaløe, O. & Kjeldgaard, N. O. Dependency on medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium. Microbiology 19, 592–606 (1958).

    CAS  Google Scholar 

  9. 9.

    Scott, M., Gunderson, C. W., Mateescu, E. M., Zhang, Z. & Hwa, T. Interdependence of cell growth and gene expression: origins and consequences. Science 330, 1099–1102 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Yamamoto, T., Izumi, S. & Gekko, K. Mass spectrometry of hydrogen/deuterium exchange in 70S ribosomal proteins from E. coli. FEBS Lett. 580, 3638–3642 (2006).

    CAS  Google Scholar 

  11. 11.

    Nomura, M. & Gourse, R. Regulation of the synthesis of ribosomes and ribosomal components. Annu. Rev. Biochem. 53, 75–117 (1984).

    CAS  Google Scholar 

  12. 12.

    Maaloe, O. & Kjeldgaard, N. O. Control of Macromolecular Synthesis (WA Benjamin, New York, 1966).

  13. 13.

    Dai, X. et al. Reduction of translating ribosomes enables Escherichia coli to maintain elongation rates during slow growth. Nat. Microbiol. 2, 16231 (2016).

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Lewin, B. Genes VIII (Pearson Education, Upper Saddle River, 2003).

  15. 15.

    Wanner, B. L. Gene regulation by phosphate in enteric bacteria. J. Cell. Biochem. 51, 47–54 (1993).

    CAS  Google Scholar 

  16. 16.

    Ahn, K. & Kornberg, A. Polyphosphate kinase from Escherichia coli. Purification and demonstration of a phosphoenzyme intermediate. J. Biol. Chem. 265, 11734–11739 (1990).

    CAS  Google Scholar 

  17. 17.

    Schleif, R., Hess, W., Finkelstein, S. & Ellis, D. Induction kinetics of the L-arabinose operon of Escherichia coli. J. Bacteriol. 115, 9–14 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Dalbow, D. G. & Young, R. Synthesis time of β-galactosidase in Escherichia coli B/r as a function of growth rate. Biochem. J. 150, 13–20 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Qin, D. & Fredrick, K. Analysis of polysomes from bacteria. Meth. Enzymol. 530, 159–172 (2013).

    CAS  Google Scholar 

  20. 20.

    Beller, R. J. & Lubsen, N. H. Effect of polypeptide chain length on dissociation of ribosomal complexes. Biochemistry 11, 3271–3276 (1972).

    CAS  Google Scholar 

  21. 21.

    Nathans, D. Puromycin inhibition of protein synthesis: incorporation of puromycin into peptide chains. Proc. Natl Acad. Sci. USA 51, 585–592 (1964).

    CAS  Google Scholar 

  22. 22.

    Steitz, J. A. Polypeptide chain initiation: nucleotide sequences of the three ribosomal binding sites in bacteriophage R17. RNA 224, 957–964 (1969).

    CAS  Google Scholar 

  23. 23.

    Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. S. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Doucette, C. D., Schwab, D. J., Wingreen, N. S. & Rabinowitz, J. D. α-Ketoglutarate coordinates carbon and nitrogen utilization via enzyme I inhibition. Nat. Chem. Biol. 7, 894–901 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Yuan, J. et al. Metabolomics‐driven quantitative analysis of ammonia assimilation in E. coli. Mol. Syst. Biol. 5, 302 (2009).

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Ikeda, T. P., Shauger, A. E. & Kustu, S. Salmonella typhimurium apparently perceives external nitrogen limitation as internal glutamine limitation. J. Mol. Biol. 259, 589–607 (1996).

    CAS  Google Scholar 

  27. 27.

    Subramaniam, A. R., Pan, T. & Cluzel, P. Environmental perturbations lift the degeneracy of the genetic code to regulate protein levels in bacteria. Proc. Natl Acad. Sci. USA 110, 2419–2424 (2013).

    CAS  Google Scholar 

  28. 28.

    Sørensen, M. A. et al. Over expression of a tRNALeu isoacceptor changes charging pattern of leucine tRNAs and reveals new codon reading. J. Mol. Biol. 354, 16–24 (2005).

    Google Scholar 

  29. 29.

    Hauryliuk, V., Atkinson, G. C., Murakami, K. S., Tenson, T. & Gerdes, K. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat. Rev. Micro 13, 298–309 (2015).

    CAS  Google Scholar 

  30. 30.

    Potrykus, K. & Cashel, M. (p)ppGpp: Still Magical?. Annu. Rev. Microbiol. 62, 35–51 (2008).

    CAS  Google Scholar 

  31. 31.

    Mitkevich, V. A. et al. Thermodynamic characterization of ppGpp binding to EF-G or IF2 and of initiator tRNA binding to free IF2 in the presence of GDP, GTP, or ppGpp. J. Mol. Biol. 402, 838–846 (2010).

    CAS  Google Scholar 

  32. 32.

    Milon, P. et al. The nucleotide-binding site of bacterial translation initiation factor 2 (IF2) as a metabolic sensor. Proc. Natl Acad. Sci. USA 103, 13962–13967 (2006).

    CAS  Google Scholar 

  33. 33.

    Jiang, M., Sullivan, S. M., Wout, P. K. & Maddock, J. R. G-protein control of the ribosome-associated stress response protein SpoT. J. Bacteriol. 189, 6140–6147 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Gentry, D. R. & Cashel, M. Mutational analysis of the Escherichia coli spoT gene identifies distinct but overlapping regions involved in ppGpp synthesis and degradation. Mol. Microbiol. 19, 1373–1384 (1996).

    CAS  Google Scholar 

  35. 35.

    Pavlov, M. Y. & Ehrenberg, M. Optimal control of gene expression for fast proteome adaptation to environmental change. Proc. Natl Acad. Sci. USA 110, 20527–20532 (2013).

    CAS  Google Scholar 

  36. 36.

    Kjeldgaard, N. O., Maaløe, O. & Schaechter, M. The transition between different physiological states during balanced growth of Salmonella typhimurium. Microbiology 19, 607–616 (1958).

    CAS  Google Scholar 

  37. 37.

    Brauer, M. J. et al. Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast. Mol. Biol. Cell 19, 352–367 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Paul, B. J., Ross, W., Gaal, T. & Gourse, R. L. rRNA transcription in Escherichia coli . Annu. Rev. Genet. 38, 749–770 (2004).

    CAS  Google Scholar 

  39. 39.

    Laursen, B. S., Sørensen, H. P., Mortensen, K. K. & Sperling-Petersen, H. U. Initiation of protein synthesis in bacteria. Microbiol. Mol. Biol. Rev. 69, 101–123 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Xiao, H. et al. Residual guanosine 3’,5’-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J. Biol. Chem. 266, 5980–5990 (1991).

    CAS  Google Scholar 

  41. 41.

    Rojas, A.-M., Ehrenberg, M. N., Andersson, S. G. E. & Kurland, C. G. ppGpp inhibition of elongation factors Tu, G and Ts during polypeptide synthesis. Mol. Gen. Genet. 197, 36–45 (1984).

    CAS  Google Scholar 

  42. 42.

    Zarrinpar, A., Chaix, A., Yooseph, S. & Panda, S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 20, 1006–1017 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Korem Kohanim, Y., Levi, D., Jona, G., Bren, A. & Alon, U. A bacterial growth law out of steady-state. 23, 2891–2900 (2018).

  44. 44.

    Erickson, D. W. et al. A global resource allocation strategy governs growth transition kinetics of Escherichia coli. Nature 551, 119–123 (2017).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Mori, M., Schink, S., Erickson, D. W., Gerland, U. & Hwa, T. Quantifying the benefit of a proteome reserve in fluctuating environments. Nat. Commun. 8, 1225 (2017).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Towbin, B. D. et al. Optimality and sub-optimality in a bacterial growth law. Nat. Commun. 8, 14123 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Peters, J. M. et al. A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. Cell 165, 1493–1506 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Kafri, M., Metzl-Raz, E., Jona, G. & Barkai, N. The cost of protein production. Cell Rep. 14, 22–31 (2016).

    CAS  Google Scholar 

  49. 49.

    Metzl-Raz, E. et al. Principles of cellular resource allocation revealed by condition-dependent proteome profiling. eLife 6, e03528 (2017).

    Google Scholar 

  50. 50.

    Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Ares, M. Bacterial RNA isolation. Cold Spring Harb. Protoc. 2012, 1024–1027 (2012).

    Google Scholar 

  52. 52.

    Zhu, M., Dai, X. & Wang, Y.-P. Real time determination of bacterial in vivoribosome translation elongation speed based on LacZα complementation system. Nucleic Acids Res. 44, e155 (2016).

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res. 44, 3–10 (2016).

    Google Scholar 

  54. 54.

    Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Dunn, J. G. & Weissman, J. S. Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data. BMC Genom. 17, 958 (2016).

    Google Scholar 

  56. 56.

    Woolstenhulme, C. J., Guydosh, N. R., Green, R. & Buskirk, A. R. High-precision analysis of translational pausing by ribosome profiling in bacteria lacking EFP. Cell Rep. 11, 13–21 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank the members of the Gitai, Wingreen and Rabinowitz laboratories for helpful discussions. We thank G.-W. Li for his support for the ribosome profiling experiments. We thank the Microarray Core Facility at the Lewis-Sigler Institute (D. Sanchez, J. M. Miller, J. Wiggins and W. Wang) for RNA-Seq sample processing and sequencing and the Princeton Proteomics Core Facility (H. Shwe and T. Srikumar) for ribosome profiling sample processing. L. Parsons provided helpful technical support for bioinformatics analysis of the sequencing data. We thank the Botstein lab, particularly S. Silverman, for chemostat operation support and all former members for discussions relating to microbial growth. This work was supported by grants from the National Institutes of Health (DP1AI124669 and R01GM082938) and NSF (PHY-1607612).

Author information




S.H.L., J.O.P., J.D.R., N.S.W. and Z.G. designed the experiments. S.H.L., J.O.P. and C.G.K. performed experiments. Z.L. and N.S.W. constructed the mathematical models. S.H.L. conducted computational analysis of sequencing data. S.H.L, Z.L., N.S.W. and Z.G. wrote the paper with assistance from J.D.R.

Corresponding authors

Correspondence to Ned S. Wingreen or Zemer Gitai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes, Supplementary Figures 1–9, Supplementary Table 1, Supplementary References.

Reporting Summary

Supplementary Table 2

All RNA-to-protein ratios quantified across nutrient limitations and genetic backgrounds.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, S.HJ., Li, Z., Park, J.O. et al. Escherichia coli translation strategies differ across carbon, nitrogen and phosphorus limitation conditions. Nat Microbiol 3, 939–947 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing