Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Human skin commensals augment Staphylococcus aureus pathogenesis

Abstract

All bacterial infections occur within a polymicrobial environment, from which a pathogen population emerges to establish disease within a host. Emphasis has been placed on prevention of pathogen dominance by competing microflora acting as probiotics1. Here we show that the virulence of the human pathogen Staphylococcus aureus is augmented by native, polymicrobial, commensal skin flora and individual species acting as ‘proinfectious agents’. The outcome is pathogen proliferation, but not commensal. Pathogenesis augmentation can be mediated by particulate cell wall peptidoglycan, reducing the S. aureus infectious dose by over 1,000-fold. This phenomenon occurs using a range of S. aureus strains and infection models and is not mediated by established receptor-mediated pathways including Nod1, Nod2, Myd88 and the NLPR3 inflammasome. During mouse sepsis, augmentation depends on liver-resident macrophages (Kupffer cells) that capture and internalize both the pathogen and the proinfectious agent, leading to reduced production of reactive oxygen species, pathogen survival and subsequent multiple liver abscess formation. The augmented infection model more closely resembles the natural situation and establishes the role of resident environmental microflora in the initiation of disease by an invading pathogen. As the human microflora is ubiquitous2, its role in increasing susceptibility to infection by S. aureus highlights potential strategies for disease prevention.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: S. aureus virulence is augmented by live commensal flora.
Fig. 2: Gram-positive PGN augments S. aureus pathogenesis in animal models.
Fig. 3: Kupffer cells are key mediators of augmentation.
Fig. 4: Reduced oxidative burst in KCs permits augmentation of S. aureus virulence.

References

  1. 1.

    Isolauri, E., Kirjavainen, P. V. & Salminen, S. Probiotics: a role in the treatment of intestinal infection and inflammation? Gut 50, iii54–iii59 (2002).

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Grice, E. A. & Segre, J. A. The skin microbiome. Nat. Rev. Microbiol. 9, 244–253 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  3. 3.

    Grice, E. A. et al. Topographical and temporal diversity of the human skin microbiome. Science 324, 1190–1192 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  4. 4.

    Naber, C. K. Staphylococcus aureus bacteremia: epidemiology, pathophysiology, and management strategies. Clin. Infect. Dis. 48, S231–S237 (2009).

    Article  PubMed  Google Scholar 

  5. 5.

    Naik, S. et al. Commensal–dendritic-cell interaction specifies a unique protective skin immune signature. Nature 520, 104–108 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  6. 6.

    Ramsey, M. M., Freire, M. O., Gabrilska, R. A., Rumbaugh, K. P. & Lemon, K. P. Staphylococcus aureus shifts toward commensalism in response to Corynebacterium species. Front. Microbiol. 7, 1230 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Lo, C.-W., Lai, Y.-K., Liu, Y.-T., Gallo, R. L. & Huang, C.-M. Staphylococcus aureus hijacks a skin commensal to intensify its virulence: immunization targeting β-hemolysin and CAMP factor. J. Invest. Dermatol. 131, 401–409 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    McVicker, G. et al. Clonal expansion during Staphylococcus aureus infection dynamics reveals the effect of antibiotic intervention. PLoS Pathog. 10, e1003959 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. 9.

    Prajsnar, T. K. et al. A privileged intraphagocyte niche is responsible for disseminated infection of Staphylococcus aureus in a zebrafish model. Cell. Microbiol. 14, 1600–1619 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. 10.

    Prajsnar, T. K., Cunliffe, V. T., Foster, S. J. & Renshaw, S. A. A novel vertebrate model of Staphylococcus aureus infection reveals phagocyte-dependent resistance of zebrafish to non-host specialized pathogens. Cell. Microbiol. 10, 2312–2325 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Horsburgh, M. J., Wiltshire, M. D., Crossley, H., Ingham, E. & Foster, S. J. PheP, a putative amino acid permease of Staphylococcus aureus, contributes to survival in vivo and during starvation. Infect. Immun. 72, 3073–3076 (2004).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  12. 12.

    Bera, A., Biswas, R., Herbert, S. & Götz, F. The presence of peptidoglycan O-acetyltransferase in various staphylococcal species correlates with lysozyme resistance and pathogenicity. Infect. Immun. 74, 4598–4604 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. 13.

    Cheng, A. G. et al. Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLos Pathog. 6, e1001036 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. 14.

    Grice, E. A. et al. A diversity profile of the human skin microbiota. Genome Res. 18, 1043–1050 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  15. 15.

    Sherertz, R. J. et al. Three-year experience with sonicated vascular catheter cultures in a clinical microbiology laboratory. J. Clin. Microbiol. 28, 76–82 (1990).

    PubMed  PubMed Central  CAS  Google Scholar 

  16. 16.

    Sorbara, M. T. & Philpott, D. J. Peptidoglycan: a critical activator of the mammalian immune system during infection and homeostasis. Immunol. Rev. 243, 40–60 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Wheeler, R., Chevalier, G., Eberl, G. & Gomperts Boneca, I. The biology of bacterial peptidoglycans and their impact on host immunity and physiology. Cell. Microbiol. 16, 1014–1023 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Baba, T., Bae, T., Schneewind, O., Takeuchi, F. & Hiramatsu, K. Genome sequence of Staphylococcus aureus strain Newman and comparative analysis of staphylococcal genomes: polymorphism and evolution of two major pathogenicity islands. J. Bacteriol. 190, 300–310 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  19. 19.

    Surewaard, B. G. J. et al. Identification and treatment of the Staphylococcus aureus reservoir in vivo. J. Exp. Med. 213, 1141–1151 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Thammavongsa, V., Missiakas, D. M. & Schneewind, O. Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science 342, 863–866 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. 21.

    Wang, R. et al. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat. Med. 13, 1510–1514 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Elek, S. D. & Conen, P. E. The virulence of Staphylococcus pyogenes for man; a study of the problems of wound infection. Br. J. Exp. Pathol. 38, 573–586 (1957).

    PubMed  PubMed Central  CAS  Google Scholar 

  23. 23.

    Schleifer, K. H. & Kandler, O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36, 407–477 (1972).

    PubMed  PubMed Central  CAS  Google Scholar 

  24. 24.

    Hashimoto, M. et al. Lipoprotein is a predominant Toll-like receptor 2 ligand in Staphylococcus aureus cell wall components. Int. Immunol. 18, 355–362 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Verdrengh, M. & Tarkowski, A. Role of neutrophils in experimental septicemia and septic arthritis induced by Staphylococcus aureus. Infect. Immun. 65, 2517–2521 (1997).

    PubMed  PubMed Central  CAS  Google Scholar 

  26. 26.

    Rigby, K. M. & DeLeo, F. R. Neutrophils in innate host defense against Staphylococcus aureus infections. Semin. Immunopathol. 34, 237–259 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Heyworth, P. G., Cross, A. R. & Curnutte, J. T. Chronic granulomatous disease. Curr. Opin. Immunol. 15, 578–584 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Zeng, Z. et al. CRIg functions as a macrophage pattern recognition receptor to directly bind and capture blood-borne Gram-positive bacteria. Cell Host Microbe 20, 99–106 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Clarke, T. B. et al. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat. Med. 16, 228–231 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. 30.

    Gauguet, S. et al. Intestinal microbiota of mice influences resistance to Staphylococcus aureus pneumonia. Infect. Immun. 83, 4003–4014 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. 31.

    Stoll, H., Dengjel, J., Nerz, C. & Götz, F. Staphylococcus aureus deficient in lipidation of prelipoproteins is attenuated in growth and immune activation. Infect. Immun. 73, 2411–2423 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. 32.

    Chamaillard, M. et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol. 4, 702–707 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Wolf, A. J. et al. Hexokinase is an innate immune receptor for the detection of bacterial peptidoglycan. Cell 166, 624–636 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. 34.

    Pollock, J. D. et al. Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat. Genet. 9, 202–209 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Boyle, J. P., Parkhouse, R. & Monie, T. P. Insights into the molecular basis of the NOD2 signalling pathway. Open Biol. 4, 140178 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. 36.

    Philpott, D. J., Sorbara, M. T., Robertson, S. J., Croitoru, K. & Girardin, S. E. NOD proteins: regulators of inflammation in health and disease. Nat. Rev. Immunol. 14, 9–23 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Korgaonkar, A., Trivedi, U., Rumbaugh, K. P. & Whiteley, M. Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. Proc. Natl Acad. Sci. USA 110, 1059–1064 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Nieto, C. & Espinosa, M. Construction of the mobilizable plasmid pMV158GFP, a derivative of pMV158 that carries the gene encoding the green fluorescent protein. Plasmid 49, 281–285 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Cheng, A. G. et al. Genetic requirements for Staphylococcus aureus abscess formation and persistence in host tissues. FASEB J. 23, 3393–3404 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. 40.

    Turner, R. D. et al. Peptidoglycan architecture can specify division planes in Staphylococcus aureus. Nat. Commun. 1, 26 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Sabroe, I., Williams, T. J., Hébert, C. A. & Collins, P. D. Chemoattractant cross-desensitization of the human neutrophil IL-8 receptor involves receptor internalization and differential receptor subtype regulation. J. Immunol. 158, 1361–1369 (1997).

    CAS  PubMed  Google Scholar 

  42. 42.

    Dockrell, D. H., Lee, M., Lynch, D. H. & Read, R. C. Immune-mediated phagocytosis and killing of Streptococcus pneumoniae are associated with direct and bystander macrophage apoptosis. J. Infect. Dis. 184, 713–722 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Bremell, T. et al. Outbreak of spontaneous staphylococcal arthritis and osteitis in mice. Arthritis Rheum. 33, 1739–1744 (1990).

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Ali, A. et al. CTLA4 immunoglobulin but not anti-tumor necrosis factor therapy promotes staphylococcal septic arthritis in mice. J. Infect. Dis. 212, 1308–1316 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Kwiecinski, J., Jin, T. & Josefsson, E. Surface proteins of Staphylococcus aureus play an important role in experimental skin infection. APMIS 122, 1240–1250 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Wong, C. H. Y., Jenne, C. N., Lee, W.-Y., Léger, C. & Kubes, P. Functional innervation of hepatic iNKT cells is immunosuppressive following stroke. Science 334, 101–105 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Wilson, R. et al. Protection against Streptococcus pneumoniae lung infection after nasopharyngeal colonization requires both humoral and cellular immune responses. Mucosal Immunol. 8, 627–639 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    Nusslein-Volhard, C. & Dahm, R. Zebrafish. A Practical Approach (Oxford Univ. Press, New York, 2002).

  49. 49.

    Horsburgh, M. J. et al. σB modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from Staphylococcus aureus 8325-4. J. Bacteriol. 184, 5457–5467 (2002).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. 50.

    Mainiero, M. et al. Differential target gene activation by the Staphylococcus aureus two-component system saeRS. J. Bacteriol. 192, 613–623 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. 51.

    Duthie, E. S. & Lorenz, L. L. Staphylococcal coagulase: mode of action and antigenicity. J. Gen. Microbiol. 6, 95–107 (1952).

    CAS  PubMed  Google Scholar 

  52. 52.

    Pang, Y. Y. et al. agr-dependent interactions of Staphylococcus aureus USA300 with human polymorphonuclear neutrophils. J. Innate Immun. 2, 546–559 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  53. 53.

    Surewaard, B. G. J. et al. Inactivation of staphylococcal phenol soluble modulins by serum lipoprotein particles. PLoS Pathog. 8, e1002606 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  54. 54.

    Fey, P. D. et al. A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. mBio 4, e00537-12 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  55. 55.

    Modun, B. J., Cockayne, A., Finch, R. & Williams, P. The Staphylococcus aureus and Staphylococcus epidermidis transferrin-binding proteins are expressed in vivo during infection. Microbiology 144, 1005–1012 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. 56.

    Hasenberg, A. et al. Catchup: a mouse model for imaging-based tracking and modulation of neutrophil granulocytes. Nat. Methods 12, 445–452 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. 57.

    Gomez de Agüero, M. et al. The maternal microbiota drives early postnatal innate immune development. Science 351, 1296–1302 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Wellcome Trust (099957/Z/12/Z, 089981), Innovate UK (27486-188210), the Swedish Research Council (2013-09302), an MRC programme grant to S.A.R. (MR/M004864/1), an MRC grant to S.J.F. (MR/R001111/1) and the University of Sheffield 2022 Futures programme via the Florey Institute. Imaging used the Wolfson Light Microscopy Facility (supported by MRC grant MR/K015753/1). P.K. is supported by Alberta Innovates Health Solutions (AIHS), the Canadian Institutes of Health Research (CIHR) and the Canada Research Chairs Program. B.G.J.S. is partially funded by a postdoctoral fellowship from CIHR. The authors acknowledge use of the Bateson Centre aquarium, Biological Services Unit, Core Histology Service and the Flow Cytometry Facility at the University of Sheffield. The authors thank the International Microbiome Centre from the University of Calgary for assistance, the Bateson Centre aquarium staff for assistance with zebrafish husbandry, L. Prince, D. Yang, J. Hooker, F. Wright and A. Hendriks for advice and assistance, F. Götz for providing SA113lgt::ermB and M. Gunzer and A. Hasenberg for providing Ly6G-tdTomato reporter mice.

Author information

Affiliations

Authors

Contributions

E.B., B.G.J.S., D.S., M.N., Y.F., A.A., A.W., E.J.G.P., P.S., P.M. and T.K.P. performed and analysed the experiments. K.D.M., T.J., D.H.D., J.A.G.S., P.K., S.A.R. and S.J.F. contributed to study design and data analysis. E.B. and S.J.F. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Simon J. Foster.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Figures 1–4

Reporting Summary

Supplementary Video 1

Capture of S. aureus and PGN by Kupffer cells. Kupffer cells (F4/80, purple) capture most intravenous injected S. aureus (5 × 107 c.f.u., BSG1) from the circulation in female C57BL/6J mice. Neutrophils (Ly6g; red). Bacteria were injected 1 min after initiation of 20 min time interval visualized by SD-IVM. Videos represent one out of three independent experiments. Scale bar, 50 µm.

Supplementary Video 2

Kupffer cells (F4/80, purple) capture most intravenous injected S. aureus + PGN from the circulation in female C57BL/6J mice. Neutrophils (Ly6g; red). Bacteria were injected 1 min after initiation of 20 min time interval visualized by SD-IVM. Videos represent one out of three independent experiments. Scale bar, 50 µm.

Supplementary Video 3

Oxidative burst associated with S. aureus and PGN within Kupffer cells. SD-IVM video of mouse livers with labelled Kupffer cells (F4/80, purple), injected with pHrodo S. aureus bioparticles (red) additionally labelled with AF647 (blue) as a reference fluorophore, and OxyBURST (green) without co-injection of 500 µg PGN. Panels show individual label channels and a merge. S. aureus bioparticles were injected 1 min after initiation of 50 min time interval visualized by SD-IVM. Videos represent one out of three independent experiments. Scale bar, 25 µm.

Supplementary Video 4

Oxidative burst associated with S. aureus and PGN within Kupffer cells. SD-IVM video of mouse livers with labelled Kupffer cells (F4/80, purple), injected with pHrodo S. aureus bioparticles (red) additionally labelled with AF647 (blue) as a reference fluorophore, and OxyBURST (green) with co-injection of 500 µg PGN. Panels show individual label channels and a merge. S. aureus bioparticles were injected 1 min after initiation of 50 min time interval visualized by SD-IVM. Videos represent one out of three independent experiments. Scale bar, 25 µm.

Supplementary Video 5

Co-phagocytosis of S. aureus and latex beads in the zebrafish embryo model of infection. In vivo imaging of 9,000 latex beads (green) and S. aureus SH1000-mCherry (red, 1,500 c.f.u.) 2 hpi. Imaging for 5 minutes. Video represents one out of two independent experiments. Scale bar, 10 μm.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boldock, E., Surewaard, B.G.J., Shamarina, D. et al. Human skin commensals augment Staphylococcus aureus pathogenesis. Nat Microbiol 3, 881–890 (2018). https://doi.org/10.1038/s41564-018-0198-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing