Abstract

Interactions between bacterial and fungal cells shape many polymicrobial communities. Bacteria elaborate diverse strategies to interact and compete with other organisms, including the deployment of protein secretion systems. The type VI secretion system (T6SS) delivers toxic effector proteins into host eukaryotic cells and competitor bacterial cells, but, surprisingly, T6SS-delivered effectors targeting fungal cells have not been reported. Here we show that the ‘antibacterial’ T6SS of Serratia marcescens can act against fungal cells, including pathogenic Candida species, and identify the previously undescribed effector proteins responsible. These antifungal effectors, Tfe1 and Tfe2, have distinct impacts on the target cell, but both can ultimately cause fungal cell death. ‘In competition’ proteomics analysis revealed that T6SS-mediated delivery of Tfe2 disrupts nutrient uptake and amino acid metabolism in fungal cells, and leads to the induction of autophagy. Intoxication by Tfe1, in contrast, causes a loss of plasma membrane potential. Our findings extend the repertoire of the T6SS and suggest that antifungal T6SSs represent widespread and important determinants of the outcome of bacterial–fungal interactions.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Boer, W., Folman, L. B., Summerbell, R. C. & Boddy, L. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev. 29, 795–811 (2005).

  2. 2.

    Peleg, A. Y., Hogan, D. A. & Mylonakis, E. Medically important bacterial–fungal interactions. Nat. Rev. Microbiol. 8, 340–349 (2010).

  3. 3.

    Costa, T. R. et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Microbiol. 13, 343–359 (2015).

  4. 4.

    Basler, M. Type VI secretion system: secretion by a contractile nanomachine. Phil. Trans. R. Soc. Lond. B 370, 20150021 (2015).

  5. 5.

    Cianfanelli, F. R., Monlezun, L. & Coulthurst, S. J. Aim, load, fire: the type VI secretion system, a bacterial nanoweapon. Trends Microbiol. 24, 51–62 (2016).

  6. 6.

    Durand, E., Cambillau, C., Cascales, E. & Journet, L. VgrG, Tae, Tle, and beyond: the versatile arsenal of type VI secretion effectors. Trends Microbiol. 22, 498–507 (2014).

  7. 7.

    Hachani, A., Wood, T. E. & Filloux, A. Type VI secretion and anti-host effectors. Curr. Opin. Microbiol. 29, 81–93 (2016).

  8. 8.

    Alcoforado Diniz, J., Liu, Y. C. & Coulthurst, S. J. Molecular weaponry: diverse effectors delivered by the type VI secretion system. Cell Microbiol. 17, 1742–1751 (2015).

  9. 9.

    Russell, A. B., Peterson, S. B. & Mougous, J. D. Type VI secretion system effectors: poisons with a purpose. Nat. Rev. Microbiol. 12, 137–148 (2014).

  10. 10.

    Murdoch, S. L. et al. The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors. J. Bacteriol. 193, 6057–6069 (2011).

  11. 11.

    Klis, F. M., de Koster, C. G. & Brul, S. Cell wall-related bionumbers and bioestimates of Saccharomyces cerevisiae and Candida albicans. Eukaryot. Cell 13, 2–9 (2014).

  12. 12.

    Fritsch, M. J. et al. Proteomic identification of novel secreted antibacterial toxins of the Serratia marcescens type VI secretion system. Mol. Cell Proteom. 12, 2735–2749 (2013).

  13. 13.

    Peters, B. M., Jabra-Rizk, M. A., O’May, G. A., Costerton, J. W. & Shirtliff, M. E. Polymicrobial interactions: impact on pathogenesis and human disease. Clin. Microbiol. Rev. 25, 193–213 (2012).

  14. 14.

    Turner, S. A. & Butler, G. The Candida pathogenic species complex. Cold Spring Harb. Perspect. Med. 4, a019778 (2014).

  15. 15.

    Cianfanelli, F. R. et al. VgrG and PAAR proteins define distinct versions of a functional type VI secretion system. PLoS Pathog. 12, e1005735 (2016).

  16. 16.

    English, G. et al. New secreted toxins and immunity proteins encoded within the type VI secretion system gene cluster of Serratia marcescens. Mol. Microbiol. 86, 921–936 (2012).

  17. 17.

    Park, Y. N. & Morschhauser, J. Tetracycline-inducible gene expression and gene deletion in Candida albicans. Eukaryot. Cell 4, 1328–1342 (2005).

  18. 18.

    Millard, P. J., Roth, B. L., Thi, H. P., Yue, S. T. & Haugland, R. P. Development of the FUN-1 family of fluorescent probes for vacuole labeling and viability testing of yeasts. Appl. Environ. Microbiol. 63, 2897–2905 (1997).

  19. 19.

    Essary, B. D. & Marshall, P. A. Assessment of FUN-1 vital dye staining: yeast with a block in the vacuolar sorting pathway have impaired ability to form CIVS when stained with FUN-1 fluorescent dye. J. Microbiol Methods 78, 208–212 (2009).

  20. 20.

    Hogan, D. A. & Kolter, R. Pseudomonas–Candida interactions: an ecological role for virulence factors. Science 296, 2229–2232 (2002).

  21. 21.

    Braun, B. R. & Johnson, A. D. Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277, 105–109 (1997).

  22. 22.

    Marzluf, G. A. Molecular genetics of sulfur assimilation in filamentous fungi and yeast. Annu Rev. Microbiol. 51, 73–96 (1997).

  23. 23.

    Kraidlova, L. et al. Characterization of the Candida albicans amino acid permease family: Gap2 is the only general amino acid permease and Gap4 is an S-adenosylmethionine (SAM) transporter required for SAM-induced morphogenesis. mSphere 1, 00284-16 (2016).

  24. 24.

    Sychrova, H. & Souciet, J. L. CAN1, a gene encoding a permease for basic amino acids in Candida albicans. Yeast 10, 1647–1651 (1994).

  25. 25.

    Matijekova, A. & Sychrova, H. Biogenesis of Candida albicans Can1 permease expressed in Saccharomyces cerevisiae. FEBS Lett. 408, 89–93 (1997).

  26. 26.

    Ljungdahl, P. O. & Daignan-Fornier, B. Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 190, 885–929 (2012).

  27. 27.

    Ljungdahl, P. O. Amino-acid-induced signalling via the SPS-sensing pathway in yeast. Biochem Soc. Trans. 37, 242–247 (2009).

  28. 28.

    Brega, E., Zufferey, R. & Mamoun, C. B. Candida albicans Csy1p is a nutrient sensor important for activation of amino acid uptake and hyphal morphogenesis. Eukaryot. Cell 3, 135–143 (2004).

  29. 29.

    Didion, T., Regenberg, B., Jorgensen, M. U., Kielland-Brandt, M. C. & Andersen, H. A. The permease homologue Ssy1p controls the expression of amino acid and peptide transporter genes in Saccharomyces cerevisiae. Mol. Microbiol. 27, 643–650 (1998).

  30. 30.

    Iraqui, I. et al. Amino acid signaling in Saccharomyces cerevisiae: a permease-like sensor of external amino acids and F-Box protein Grr1p are required for transcriptional induction of the AGP1 gene, which encodes a broad-specificity amino acid permease. Mol. Cell Biol. 19, 989–1001 (1999).

  31. 31.

    Klasson, H., Fink, G. R. & Ljungdahl, P. O. Ssy1p and Ptr3p are plasma membrane components of a yeast system that senses extracellular amino acids. Mol. Cell Biol. 19, 5405–5416 (1999).

  32. 32.

    Tripathi, G. et al. Gcn4 co-ordinates morphogenetic and metabolic responses to amino acid starvation in Candida albicans. EMBO J. 21, 5448–5456 (2002).

  33. 33.

    Hinnebusch, A. G. Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev. 52, 248–273 (1988).

  34. 34.

    Reggiori, F. & Klionsky, D. J. Autophagic processes in yeast: mechanism, machinery and regulation. Genetics 194, 341–361 (2013).

  35. 35.

    Guan, J. et al. Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris. Mol. Biol. Cell 12, 3821–3838 (2001).

  36. 36.

    Delorme-Axford, E., Guimaraes, R. S., Reggiori, F. & Klionsky, D. J. The yeast Saccharomyces cerevisiae: an overview of methods to study autophagy progression. Methods 75, 3–12 (2015).

  37. 37.

    Cebollero, E. & Reggiori, F. Regulation of autophagy in yeast Saccharomyces cerevisiae. Biochim Biophys. Acta 1793, 1413–1421 (2009).

  38. 38.

    Rubin-Bejerano, I., Fraser, I., Grisafi, P. & Fink, G. R. Phagocytosis by neutrophils induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans. Proc. Natl Acad. Sci. USA 100, 11007–11012 (2003).

  39. 39.

    Fradin, C. et al. Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol. Microbiol. 56, 397–415 (2005).

  40. 40.

    Lorenz, M. C., Bender, J. A. & Fink, G. R. Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot. Cell 3, 1076–1087 (2004).

  41. 41.

    Jimenez-Lopez, C. et al. Candida albicans induces arginine biosynthetic genes in response to host-derived reactive oxygen species. Eukaryot. Cell 12, 91–100 (2013).

  42. 42.

    Basler, M., Pilhofer, M., Henderson, G. P., Jensen, G. J. & Mekalanos, J. J. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483, 182–186 (2012).

  43. 43.

    Dupres, V., Dufrene, Y. F. & Heinisch, J. J. Measuring cell wall thickness in living yeast cells using single molecular rulers. ACS Nano 4, 5498–5504 (2010).

  44. 44.

    Yamaguchi, M. et al. Structome of Saccharomyces cerevisiae determined by freeze-substitution and serial ultrathin-sectioning electron microscopy. J. Electron Microsc. (Tokyo) 60, 321–335 (2011).

  45. 45.

    Hoarau, G. et al. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn’s disease. mBio 7, e01250-16 (2016).

  46. 46.

    Mahlen, S. D. Serratia infections: from military experiments to current practice. Clin. Microbiol. Rev. 24, 755–791 (2011).

  47. 47.

    Haapalainen, M. et al. Hcp2, a secreted protein of the phytopathogen Pseudomonas syringae pv. tomato DC3000, is required for fitness for competition against bacteria and yeasts. J. Bacteriol. 194, 4810–4822 (2012).

  48. 48.

    Amberg, D. C., Burke, D., Strathern, J. N. & Burke, D. Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual (Cold Spring Harbor Laboratory Press, New York, 2005).

  49. 49.

    Allan, C. et al. OMERO: flexible, model-driven data management for experimental biology. Nat. Methods 9, 245–253 (2012).

  50. 50.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

  51. 51.

    te Winkel, J. D. et al. Analysis of antimicrobial-triggered membrane depolarization using voltage sensitive dyes. Front. Cell Dev. Biol. 4, 29 (2016).

  52. 52.

    Knop, M. et al. Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15, 963–972 (1999).

  53. 53.

    Miller-Fleming, L., Cheong, H., Antas, P. & Klionsky, D. J. Detection of Saccharomyces cerevisiae Atg13 by western blot. Autophagy 10, 514–517 (2014).

  54. 54.

    Kurz, C. L. et al. Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening. EMBO J. 22, 1451–1460 (2003).

  55. 55.

    Petty, N. K., Foulds, I. J., Pradel, E., Ewbank, J. J. & Salmond, G. P. A generalized transducing phage (phiIF3) for the genomically sequenced Serratia marcescens strain Db11: a tool for functional genomics of an opportunistic human pathogen. Microbiology 152, 1701–1708 (2006).

  56. 56.

    Naujoks, J. et al. IFNs modify the proteome of Legionella-containing vacuoles and restrict infection via IRG1-derived itaconic acid. PLoS Pathog. 12, e1005408 (2016).

  57. 57.

    Guo, M. et al. High-resolution quantitative proteome analysis reveals substantial differences between phagosomes of RAW 264.7 and bone marrow derived macrophages. Proteomics 15, 3169–3174 (2015).

  58. 58.

    Dill, B. D. et al. Quantitative proteome analysis of temporally resolved phagosomes following uptake via key phagocytic receptors. Mol. Cell. Proteom. 14, 1334–1349 (2015).

  59. 59.

    Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

  60. 60.

    Ritorto, M. S., Cook, K., Tyagi, K., Pedrioli, P. G. & Trost, M. Hydrophilic strong anion exchange (hSAX) chromatography for highly orthogonal peptide separation of complex proteomes. J. Proteome Res. 12, 2449–2457 (2013).

  61. 61.

    Muzzey, D., Schwartz, K., Weissman, J. S. & Sherlock, G. Assembly of a phased diploid Candida albicans genome facilitates allele-specific measurements and provides a simple model for repeat and indel structure. Genome Biol. 14, R97 (2013).

  62. 62.

    Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).

  63. 63.

    Skrzypek, M. S. et al. The Candida Genome Database (CGD): incorporation of Assembly 22, systematic identifiers and visualization of high throughput sequencing data. Nucleic Acids Res. 45, D592–D596 (2017).

  64. 64.

    Vizcaino, J. A. et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, D447–D456 (2016).

Download references

Acknowledgements

This work was supported by the Wellcome Trust (Senior Research Fellowship in Basic Biomedical Science to S.J.C., 104556; 097377, J.Q.; 101873 and 200208, N.A.R.G.), the MRC (MR/K000111X/1, S.J.C.; MC_UU_12016/5, M.T.), and the BBSRC (BB/K016393/1 and BB/P020119/1, J.Q.). We thank M. Fritsch, M. López Martín and B. Hollmann for help with strain construction; G. Eitzen for construction of pGED1; D. MacCallum for the gift of Candida glabrata ATCC2001; J. Morschhäuser for the gift of pNIM1; G. Milne (Microscopy and Histology facility, University of Aberdeen) for assistance with TEM; and P. Taylor, G. Mariano, M. Porter, L. Monlezun and C. Rickman for advice and technical assistance.

Competing interests

The authors declare no competing interests.

Author information

Affiliations

  1. Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK

    • Katharina Trunk
    • , Yi-Chia Liu
    •  & Sarah J. Coulthurst
  2. MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK

    • Julien Peltier
    • , Brian D. Dill
    •  & Matthias Trost
  3. Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, UK

    • Julien Peltier
    • , Janet Quinn
    •  & Matthias Trost
  4. Aberdeen Fungal Group, Institute of Medical Sciences, MRC Centre for Medical Mycology at the University of Aberdeen, Aberdeen, UK

    • Louise Walker
    •  & Neil A. R. Gow
  5. Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK

    • Michael J. R. Stark
  6. Centre for Bacterial Cell Biology, Newcastle University, Newcastle-upon-Tyne, UK

    • Henrik Strahl

Authors

  1. Search for Katharina Trunk in:

  2. Search for Julien Peltier in:

  3. Search for Yi-Chia Liu in:

  4. Search for Brian D. Dill in:

  5. Search for Louise Walker in:

  6. Search for Neil A. R. Gow in:

  7. Search for Michael J. R. Stark in:

  8. Search for Janet Quinn in:

  9. Search for Henrik Strahl in:

  10. Search for Matthias Trost in:

  11. Search for Sarah J. Coulthurst in:

Contributions

K.T., M.T. and S.J.C. conceived the study and designed experiments; K.T., J.P., Y.-C..L., B.D.D., L.W. and H.S. performed experimental work; J.P. and H.S. additionally performed data analysis; J.Q., M.J.R.S. and N.A.R.G. contributed expertise and reagents; and K.T., M.T. and S.J.C. analysed data and wrote the manuscript.

Corresponding authors

Correspondence to Matthias Trost or Sarah J. Coulthurst.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–18, Supplementary Tables 1–4, Supplementary References.

  2. Reporting Summary

  3. Supplementary Dataset 1

    Proteomics data for all S. marcescens proteins quantified by label-free quantitative mass spectrometry analysis of the S. marcescens cellular proteome.

  4. Supplementary Dataset 2

    Proteomics data for all C. albicans and S. marcescens proteins quantified by TMT-labelling mass spectrometry analysis following co-culture (in competition proteomics experiment).

  5. Supplementary Dataset 3

    Full clustering of ANOVA-positive C. albicans proteins from the in competition proteomics experiment.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41564-018-0191-x

Further reading