Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The type VI secretion system deploys antifungal effectors against microbial competitors


Interactions between bacterial and fungal cells shape many polymicrobial communities. Bacteria elaborate diverse strategies to interact and compete with other organisms, including the deployment of protein secretion systems. The type VI secretion system (T6SS) delivers toxic effector proteins into host eukaryotic cells and competitor bacterial cells, but, surprisingly, T6SS-delivered effectors targeting fungal cells have not been reported. Here we show that the ‘antibacterial’ T6SS of Serratia marcescens can act against fungal cells, including pathogenic Candida species, and identify the previously undescribed effector proteins responsible. These antifungal effectors, Tfe1 and Tfe2, have distinct impacts on the target cell, but both can ultimately cause fungal cell death. ‘In competition’ proteomics analysis revealed that T6SS-mediated delivery of Tfe2 disrupts nutrient uptake and amino acid metabolism in fungal cells, and leads to the induction of autophagy. Intoxication by Tfe1, in contrast, causes a loss of plasma membrane potential. Our findings extend the repertoire of the T6SS and suggest that antifungal T6SSs represent widespread and important determinants of the outcome of bacterial–fungal interactions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Cross-kingdom targeting by the T6SS of S. marcescens depends on the antifungal effectors Tfe1 and Tfe2.
Fig. 2: Quantitative cellular proteomics identifies known and previously unidentified T6SS-secreted proteins.
Fig. 3: Tfe1 and Tfe2 are antifungal toxins that impact fungal cell integrity in a species-dependent manner.
Fig. 4: T6SS-mediated effector delivery disrupts fungal metabolic activity and membrane potential, and can act against hyphal cells.
Fig. 5: In competition quantitative proteomics reveals interference of Tfe2 with fungal nutrient uptake and metabolism.
Fig. 6: Tfe2 alters the cellular amino acid pool and induces autophagy in fungal cells.


  1. 1.

    Boer, W., Folman, L. B., Summerbell, R. C. & Boddy, L. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev. 29, 795–811 (2005).

    Google Scholar 

  2. 2.

    Peleg, A. Y., Hogan, D. A. & Mylonakis, E. Medically important bacterial–fungal interactions. Nat. Rev. Microbiol. 8, 340–349 (2010).

    CAS  Google Scholar 

  3. 3.

    Costa, T. R. et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Microbiol. 13, 343–359 (2015).

    CAS  Google Scholar 

  4. 4.

    Basler, M. Type VI secretion system: secretion by a contractile nanomachine. Phil. Trans. R. Soc. Lond. B 370, 20150021 (2015).

    Google Scholar 

  5. 5.

    Cianfanelli, F. R., Monlezun, L. & Coulthurst, S. J. Aim, load, fire: the type VI secretion system, a bacterial nanoweapon. Trends Microbiol. 24, 51–62 (2016).

    CAS  Google Scholar 

  6. 6.

    Durand, E., Cambillau, C., Cascales, E. & Journet, L. VgrG, Tae, Tle, and beyond: the versatile arsenal of type VI secretion effectors. Trends Microbiol. 22, 498–507 (2014).

    CAS  Google Scholar 

  7. 7.

    Hachani, A., Wood, T. E. & Filloux, A. Type VI secretion and anti-host effectors. Curr. Opin. Microbiol. 29, 81–93 (2016).

    CAS  Google Scholar 

  8. 8.

    Alcoforado Diniz, J., Liu, Y. C. & Coulthurst, S. J. Molecular weaponry: diverse effectors delivered by the type VI secretion system. Cell Microbiol. 17, 1742–1751 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Russell, A. B., Peterson, S. B. & Mougous, J. D. Type VI secretion system effectors: poisons with a purpose. Nat. Rev. Microbiol. 12, 137–148 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Murdoch, S. L. et al. The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors. J. Bacteriol. 193, 6057–6069 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Klis, F. M., de Koster, C. G. & Brul, S. Cell wall-related bionumbers and bioestimates of Saccharomyces cerevisiae and Candida albicans. Eukaryot. Cell 13, 2–9 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Fritsch, M. J. et al. Proteomic identification of novel secreted antibacterial toxins of the Serratia marcescens type VI secretion system. Mol. Cell Proteom. 12, 2735–2749 (2013).

    CAS  Google Scholar 

  13. 13.

    Peters, B. M., Jabra-Rizk, M. A., O’May, G. A., Costerton, J. W. & Shirtliff, M. E. Polymicrobial interactions: impact on pathogenesis and human disease. Clin. Microbiol. Rev. 25, 193–213 (2012).

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Turner, S. A. & Butler, G. The Candida pathogenic species complex. Cold Spring Harb. Perspect. Med. 4, a019778 (2014).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Cianfanelli, F. R. et al. VgrG and PAAR proteins define distinct versions of a functional type VI secretion system. PLoS Pathog. 12, e1005735 (2016).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    English, G. et al. New secreted toxins and immunity proteins encoded within the type VI secretion system gene cluster of Serratia marcescens. Mol. Microbiol. 86, 921–936 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Park, Y. N. & Morschhauser, J. Tetracycline-inducible gene expression and gene deletion in Candida albicans. Eukaryot. Cell 4, 1328–1342 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Millard, P. J., Roth, B. L., Thi, H. P., Yue, S. T. & Haugland, R. P. Development of the FUN-1 family of fluorescent probes for vacuole labeling and viability testing of yeasts. Appl. Environ. Microbiol. 63, 2897–2905 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Essary, B. D. & Marshall, P. A. Assessment of FUN-1 vital dye staining: yeast with a block in the vacuolar sorting pathway have impaired ability to form CIVS when stained with FUN-1 fluorescent dye. J. Microbiol Methods 78, 208–212 (2009).

    CAS  Google Scholar 

  20. 20.

    Hogan, D. A. & Kolter, R. Pseudomonas–Candida interactions: an ecological role for virulence factors. Science 296, 2229–2232 (2002).

    CAS  Google Scholar 

  21. 21.

    Braun, B. R. & Johnson, A. D. Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277, 105–109 (1997).

    CAS  Google Scholar 

  22. 22.

    Marzluf, G. A. Molecular genetics of sulfur assimilation in filamentous fungi and yeast. Annu Rev. Microbiol. 51, 73–96 (1997).

    CAS  Google Scholar 

  23. 23.

    Kraidlova, L. et al. Characterization of the Candida albicans amino acid permease family: Gap2 is the only general amino acid permease and Gap4 is an S-adenosylmethionine (SAM) transporter required for SAM-induced morphogenesis. mSphere 1, 00284-16 (2016).

    Google Scholar 

  24. 24.

    Sychrova, H. & Souciet, J. L. CAN1, a gene encoding a permease for basic amino acids in Candida albicans. Yeast 10, 1647–1651 (1994).

    CAS  Google Scholar 

  25. 25.

    Matijekova, A. & Sychrova, H. Biogenesis of Candida albicans Can1 permease expressed in Saccharomyces cerevisiae. FEBS Lett. 408, 89–93 (1997).

    CAS  Google Scholar 

  26. 26.

    Ljungdahl, P. O. & Daignan-Fornier, B. Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 190, 885–929 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Ljungdahl, P. O. Amino-acid-induced signalling via the SPS-sensing pathway in yeast. Biochem Soc. Trans. 37, 242–247 (2009).

    CAS  Google Scholar 

  28. 28.

    Brega, E., Zufferey, R. & Mamoun, C. B. Candida albicans Csy1p is a nutrient sensor important for activation of amino acid uptake and hyphal morphogenesis. Eukaryot. Cell 3, 135–143 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Didion, T., Regenberg, B., Jorgensen, M. U., Kielland-Brandt, M. C. & Andersen, H. A. The permease homologue Ssy1p controls the expression of amino acid and peptide transporter genes in Saccharomyces cerevisiae. Mol. Microbiol. 27, 643–650 (1998).

    CAS  Google Scholar 

  30. 30.

    Iraqui, I. et al. Amino acid signaling in Saccharomyces cerevisiae: a permease-like sensor of external amino acids and F-Box protein Grr1p are required for transcriptional induction of the AGP1 gene, which encodes a broad-specificity amino acid permease. Mol. Cell Biol. 19, 989–1001 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Klasson, H., Fink, G. R. & Ljungdahl, P. O. Ssy1p and Ptr3p are plasma membrane components of a yeast system that senses extracellular amino acids. Mol. Cell Biol. 19, 5405–5416 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Tripathi, G. et al. Gcn4 co-ordinates morphogenetic and metabolic responses to amino acid starvation in Candida albicans. EMBO J. 21, 5448–5456 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Hinnebusch, A. G. Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev. 52, 248–273 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Reggiori, F. & Klionsky, D. J. Autophagic processes in yeast: mechanism, machinery and regulation. Genetics 194, 341–361 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Guan, J. et al. Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris. Mol. Biol. Cell 12, 3821–3838 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Delorme-Axford, E., Guimaraes, R. S., Reggiori, F. & Klionsky, D. J. The yeast Saccharomyces cerevisiae: an overview of methods to study autophagy progression. Methods 75, 3–12 (2015).

    CAS  Google Scholar 

  37. 37.

    Cebollero, E. & Reggiori, F. Regulation of autophagy in yeast Saccharomyces cerevisiae. Biochim Biophys. Acta 1793, 1413–1421 (2009).

    CAS  Google Scholar 

  38. 38.

    Rubin-Bejerano, I., Fraser, I., Grisafi, P. & Fink, G. R. Phagocytosis by neutrophils induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans. Proc. Natl Acad. Sci. USA 100, 11007–11012 (2003).

    CAS  Google Scholar 

  39. 39.

    Fradin, C. et al. Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol. Microbiol. 56, 397–415 (2005).

    CAS  Google Scholar 

  40. 40.

    Lorenz, M. C., Bender, J. A. & Fink, G. R. Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot. Cell 3, 1076–1087 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Jimenez-Lopez, C. et al. Candida albicans induces arginine biosynthetic genes in response to host-derived reactive oxygen species. Eukaryot. Cell 12, 91–100 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Basler, M., Pilhofer, M., Henderson, G. P., Jensen, G. J. & Mekalanos, J. J. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483, 182–186 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Dupres, V., Dufrene, Y. F. & Heinisch, J. J. Measuring cell wall thickness in living yeast cells using single molecular rulers. ACS Nano 4, 5498–5504 (2010).

    CAS  Google Scholar 

  44. 44.

    Yamaguchi, M. et al. Structome of Saccharomyces cerevisiae determined by freeze-substitution and serial ultrathin-sectioning electron microscopy. J. Electron Microsc. (Tokyo) 60, 321–335 (2011).

    Google Scholar 

  45. 45.

    Hoarau, G. et al. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn’s disease. mBio 7, e01250-16 (2016).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Mahlen, S. D. Serratia infections: from military experiments to current practice. Clin. Microbiol. Rev. 24, 755–791 (2011).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Haapalainen, M. et al. Hcp2, a secreted protein of the phytopathogen Pseudomonas syringae pv. tomato DC3000, is required for fitness for competition against bacteria and yeasts. J. Bacteriol. 194, 4810–4822 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Amberg, D. C., Burke, D., Strathern, J. N. & Burke, D. Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual (Cold Spring Harbor Laboratory Press, New York, 2005).

  49. 49.

    Allan, C. et al. OMERO: flexible, model-driven data management for experimental biology. Nat. Methods 9, 245–253 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS  Google Scholar 

  51. 51.

    te Winkel, J. D. et al. Analysis of antimicrobial-triggered membrane depolarization using voltage sensitive dyes. Front. Cell Dev. Biol. 4, 29 (2016).

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Knop, M. et al. Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15, 963–972 (1999).

    CAS  Google Scholar 

  53. 53.

    Miller-Fleming, L., Cheong, H., Antas, P. & Klionsky, D. J. Detection of Saccharomyces cerevisiae Atg13 by western blot. Autophagy 10, 514–517 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Kurz, C. L. et al. Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening. EMBO J. 22, 1451–1460 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Petty, N. K., Foulds, I. J., Pradel, E., Ewbank, J. J. & Salmond, G. P. A generalized transducing phage (phiIF3) for the genomically sequenced Serratia marcescens strain Db11: a tool for functional genomics of an opportunistic human pathogen. Microbiology 152, 1701–1708 (2006).

    CAS  Google Scholar 

  56. 56.

    Naujoks, J. et al. IFNs modify the proteome of Legionella-containing vacuoles and restrict infection via IRG1-derived itaconic acid. PLoS Pathog. 12, e1005408 (2016).

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Guo, M. et al. High-resolution quantitative proteome analysis reveals substantial differences between phagosomes of RAW 264.7 and bone marrow derived macrophages. Proteomics 15, 3169–3174 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Dill, B. D. et al. Quantitative proteome analysis of temporally resolved phagosomes following uptake via key phagocytic receptors. Mol. Cell. Proteom. 14, 1334–1349 (2015).

    CAS  Google Scholar 

  59. 59.

    Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Ritorto, M. S., Cook, K., Tyagi, K., Pedrioli, P. G. & Trost, M. Hydrophilic strong anion exchange (hSAX) chromatography for highly orthogonal peptide separation of complex proteomes. J. Proteome Res. 12, 2449–2457 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Muzzey, D., Schwartz, K., Weissman, J. S. & Sherlock, G. Assembly of a phased diploid Candida albicans genome facilitates allele-specific measurements and provides a simple model for repeat and indel structure. Genome Biol. 14, R97 (2013).

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).

    CAS  Google Scholar 

  63. 63.

    Skrzypek, M. S. et al. The Candida Genome Database (CGD): incorporation of Assembly 22, systematic identifiers and visualization of high throughput sequencing data. Nucleic Acids Res. 45, D592–D596 (2017).

    CAS  Google Scholar 

  64. 64.

    Vizcaino, J. A. et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, D447–D456 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


This work was supported by the Wellcome Trust (Senior Research Fellowship in Basic Biomedical Science to S.J.C., 104556; 097377, J.Q.; 101873 and 200208, N.A.R.G.), the MRC (MR/K000111X/1, S.J.C.; MC_UU_12016/5, M.T.), and the BBSRC (BB/K016393/1 and BB/P020119/1, J.Q.). We thank M. Fritsch, M. López Martín and B. Hollmann for help with strain construction; G. Eitzen for construction of pGED1; D. MacCallum for the gift of Candida glabrata ATCC2001; J. Morschhäuser for the gift of pNIM1; G. Milne (Microscopy and Histology facility, University of Aberdeen) for assistance with TEM; and P. Taylor, G. Mariano, M. Porter, L. Monlezun and C. Rickman for advice and technical assistance.

Competing interests

The authors declare no competing interests.

Author information




K.T., M.T. and S.J.C. conceived the study and designed experiments; K.T., J.P., Y.-C..L., B.D.D., L.W. and H.S. performed experimental work; J.P. and H.S. additionally performed data analysis; J.Q., M.J.R.S. and N.A.R.G. contributed expertise and reagents; and K.T., M.T. and S.J.C. analysed data and wrote the manuscript.

Corresponding authors

Correspondence to Matthias Trost or Sarah J. Coulthurst.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–18, Supplementary Tables 1–4, Supplementary References.

Reporting Summary

Supplementary Dataset 1

Proteomics data for all S. marcescens proteins quantified by label-free quantitative mass spectrometry analysis of the S. marcescens cellular proteome.

Supplementary Dataset 2

Proteomics data for all C. albicans and S. marcescens proteins quantified by TMT-labelling mass spectrometry analysis following co-culture (in competition proteomics experiment).

Supplementary Dataset 3

Full clustering of ANOVA-positive C. albicans proteins from the in competition proteomics experiment.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trunk, K., Peltier, J., Liu, YC. et al. The type VI secretion system deploys antifungal effectors against microbial competitors. Nat Microbiol 3, 920–931 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing