Perspective | Published:

Defining microbiome function

Nature Microbiologyvolume 3pages864869 (2018) | Download Citation

Abstract

Why does a microorganism associate with a host? What function does it perform? Such questions are difficult to unequivocally address and remain hotly debated. This is partially because scientists often use different philosophical definitions of ‘function’ ambiguously and interchangeably, as exemplified by the controversy surrounding the Encyclopedia of DNA Elements (ENCODE) project. Here, I argue that research studying host-associated microbial communities and their genomes (that is, microbiomes) faces similar pitfalls and that unclear or misapplied conceptions of function underpin many controversies in this field. In particular, experiments that support phenomenological models of function can inappropriately be used to support functional models that instead require specific measurements of evolutionary selection. Microbiome research also requires uniquely clear definitions of ‘who the function is for’, in contrast to most single-organism systems where this is implicit. I illustrate how obscuring either of these issues can lead to substantial confusion and misinterpretation of microbiome function, using the varied conceptions of the holobiont as a current and cogent example. Using clear functional definitions and appropriate types of evidence are essential to effectively communicate microbiome research and foster host health.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl Acad. Sci. USA 110, 3229–3236 (2013).

  2. 2.

    Casadevall, A. & Fang, F. C. Descriptive science. Infect. Immun. 76, 3835–3836 (2008).

  3. 3.

    Martiny, J. B. H., Jones, S. E., Lennon, J. T. & Martiny, A. C. Microbiomes in light of traits: a phylogenetic perspective. Science 350, aac9323 (2015).

  4. 4.

    Amundson, R. & Lauder, G. V. Function without purpose: the uses of causal role function in evolutionary biology. Biol. Philos. 9, 443–469 (1994).

  5. 5.

    Wright, L. Functions. Philos. Rev. 82, 139–168 (1973).

  6. 6.

    Cummins, R. Functional analysis. J. Philos. 72, 741–765 (1975).

  7. 7.

    Millikan, R. G. In defense of proper functions. Philos. Sci. 56, 288–302 (1989).

  8. 8.

    Neander, K. The teleological notion of ‘function’. Australas. J. Philos. 69, 454–468 (1991).

  9. 9.

    Doolittle, W. F., Brunet, T. D. P., Linquist, S. & Gregory, T. R. Distinguishing between ‘function’ and ‘effect’ in genome biology. Genome Biol. Evol. 6, 1234–1237 (2014).

  10. 10.

    Doolittle, W. F. & Brunet, T. D. P. On causal roles and selected effects: our genome is mostly junk. BMC Biol. 15, 116 (2017).

  11. 11.

    Godfrey-Smith, P. A modern history theory of functions. Nous 28, 344–362 (1994).

  12. 12.

    Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).

  13. 13.

    Okasha, S. Evolution and the Levels of Selection (Oxford Univ. Press, Oxford, 2006).

  14. 14.

    Gould, S. J. & Lewontin, R. C. The spandrels of San Marco and the panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. B Biol. Sci. 205, 581–598 (1979).

  15. 15.

    Mayr, E. Cause and effect in biology. Science 134, 1501–1506 (1961).

  16. 16.

    Tinbergen, N. On aims and methods of Ethology. Z. Tierpsychol. 20, 410–433 (1963).

  17. 17.

    Smith, K., McCoy, K. D. & Macpherson, A. J. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin. Immunol. 19, 59–69 (2007).

  18. 18.

    Mahowald, M. A. et al. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc. Natl Acad. Sci. USA 106, 5859–5864 (2009).

  19. 19.

    Baquero, F. & Nombela, C. The microbiome as a human organ. Clin. Microbiol. Infect. 18, 2–4 (2012).

  20. 20.

    Bordenstein, S. R. & Theis, K. R. Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol. 13, e1002226 (2015).

  21. 21.

    Theis, K. R. et al. Getting the hologenome concept right: an eco-evolutionary framework for hosts and their microbiomes. mSystems 1, e00028–16 (2016).

  22. 22.

    Mushegian, A. A. & Ebert, D. Rethinking ‘mutualism’ in diverse host-symbiont communities. BioEssays 38, 100–108 (2016).

  23. 23.

    Kopac, S. M. & Klassen, J. L. Can they make it on their own? Hosts, microorganisms, and the holobiont niche. Front. Microbiol. 7, 1647 (2016).

  24. 24.

    Ebert, D. The epidemiology and evolution of symbionts with mixed-mode transmission. Annu. Rev. Ecol. Evol. Syst. 44, 623–643 (2013).

  25. 25.

    David, L. A. et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 15, R89 (2014).

  26. 26.

    The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

  27. 27.

    Archie, E. A. & Tung, J. Social behavior and the microbiome. Curr. Opin. Behav. Sci. 6, 28–34 (2015).

  28. 28.

    Smillie, C. S. et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480, 241–244 (2011).

  29. 29.

    Byndloss, M. X. et al. Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science 357, 570–575 (2017).

  30. 30.

    Fitzpatrick, B. M. Symbiote transmission and maintenance of extra-genomic associations. Front. Microbiol. 5, 46 (2014).

  31. 31.

    Lynch, M. The frailty of adaptive hypotheses for the origins of organismal complexity. Proc. Natl Acad. Sci. USA 104, 8597–8604 (2007).

  32. 32.

    Sharon, G. et al. Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 107, 20051–20056 (2010).

  33. 33.

    Brucker, R. M. & Bordenstein, S. R. The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia. Science 341, 667–669 (2013).

  34. 34.

    Brooks, A. W., Kohl, K. D., Brucker, R. M., van Opstal, E. J. & Bordenstein, S. R. Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol. 14, e2000225 (2016).

  35. 35.

    Zilber-Rosenberg, I. & Rosenberg, E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol. Rev. 32, 723–735 (2008).

  36. 36.

    Rosenberg, E. & Zilber-Rosenberg, I. The Hologenome Concept: Human, Animal and Plant Microbiota (Springer International Publishing, Cham, 2013).

  37. 37.

    Roughgarden, J., Gilbert, S. F., Rosenberg, E., Zilber-Rosenberg, I. & Lloyd, E. A. Holobionts as units of selection and a model of their population dynamics and evolution. Biol. Theory 13, 44–65 (2018).

  38. 38.

    Moran, N. A. & Sloan, D. B. The hologenome concept: helpful or hollow? PLoS Biol. 13, e1002311 (2015).

  39. 39.

    Douglas, A. E. & Werren, J. H. Holes in the hologenome: why host-microbial symbioses are not holobionts. mBio 7, e02099–15 (2016).

  40. 40.

    Janzen, D. H. When is it coevolution? Evolution 34, 611–612 (1980).

  41. 41.

    Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

  42. 42.

    Casadevall, A. & Fang, F. C. Rigorous science: a how-to guide. mBio 7, e01902–16 (2016).

  43. 43.

    Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  44. 44.

    Graur, D. An upper limit on the functional fraction of the human genome. Genome Biol. Evol. 9, 1880–1885 (2017).

  45. 45.

    Eddy, S. R. The C-value paradox, junk DNA and ENCODE. Curr. Biol. 22, R898–R899 (2012).

  46. 46.

    Doolittle, W. F. Is junk DNA bunk? A critique of ENCODE. Proc. Natl Acad. Sci. USA 110, 5294–5300 (2013).

  47. 47.

    Brunet, T. D. P. & Doolittle, W. F. Getting ‘function’ right. Proc. Natl Acad. Sci. USA 111, E3365 (2014).

  48. 48.

    Kellis, M. et al. Defining functional DNA elements in the human genome. Proc. Natl Acad. Sci. USA 111, 6131–6138 (2014).

  49. 49.

    Price, G. R. Selection and covariance. Nature 227, 520–521 (1970).

  50. 50.

    Webster, N. S. & Reusch, T. B. H. Microbial contributions to the persistence of coral reefs. ISME J. 11, 2167–2174 (2017).

  51. 51.

    Govaert, L., Pantel, J. H. & De Meester, L. Eco-evolutionary partitioning metrics: assessing the importance of ecological and evolutionary contributions to population and community change. Ecol. Lett. 19, 839–853 (2016).

  52. 52.

    Rocha, E. P. C. Evolutionary patterns in prokaryotic genomes. Curr. Opin. Microbiol. 11, 454–460 (2008).

  53. 53.

    Hurst, L. D. The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet. 18, 486 (2002).

Download references

Acknowledgements

I thank the members of the Klassen lab and J. P. Gogarten for their helpful feedback on earlier versions of this manuscript. Funding for this work was provided by NSF IOS-1656475 and the University of Connecticut. These funders had no role in the conceptualization, design, data collection, analysis, decision to publish or preparation of the manuscript.

Author information

Affiliations

  1. Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA

    • Jonathan L. Klassen

Authors

  1. Search for Jonathan L. Klassen in:

Competing interests

The author declares no competing interests.

Corresponding author

Correspondence to Jonathan L. Klassen.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41564-018-0189-4