Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chlamydia trachomatis paralyses neutrophils to evade the host innate immune response

Abstract

Chlamydia trachomatis, an obligate intracellular human pathogen, is a major cause of sexually transmitted diseases. Infections often occur without symptoms, a feature that has been attributed to the ability of the pathogen to evade the host immune response. We show here that C. trachomatis paralyses the host immune system by preventing the activation of polymorphic nuclear leukocytes (PMNs). PMNs infected with Chlamydia fail to produce neutrophil extracellular traps and the bacteria are able to survive in PMNs for extended periods of time. We have identified the secreted chlamydial protease-like activating factor (CPAF) as an effector mediating the evasion of the innate immune response since CPAF-deficient Chlamydia activate PMNs and are subsequently efficiently killed. CPAF suppresses the oxidative burst and interferes with chemical-mediated activation of neutrophils. We identified formyl peptide receptor 2 (FPR2) as a target of CPAF. FPR2 is cleaved by CPAF and released from the surface of PMNs. In contrast to previously described subversion mechanisms that mainly act on already activated PMNs, we describe here details of how Chlamydia actively paralyses PMNs, including the formation of neutrophil extracellular traps, to evade the host’s innate immune response.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Chlamydia trachomatis prevents NET formation.
Fig. 2: Chlamydia abrogates receptor-independent activation of neutrophils.
Fig. 3: The Chlamydia effector CPAF targets FPR2.
Fig. 4: Chlamydia infection dampens G-protein-coupled receptor signalling and prevents neutrophil degranulation.
Fig. 5: FPR2-KO mice rescue the survival of CPAF-deficient Chlamydia.
Fig. 6: Model of human neutrophil paralysis by Chlamydia infection.

References

  1. 1.

    Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    CAS  Article  Google Scholar 

  2. 2.

    Murphy, P. M. et al. A structural homologue of the N-formyl peptide receptor. Characterization and chromosome mapping of a peptide chemoattractant receptor family. J. Biol. Chem. 267, 7637–7643 (1992).

    CAS  Google Scholar 

  3. 3.

    Kretschmer, D. et al. Human formyl peptide receptor 2 senses highly pathogenic Staphylococcus aureus. Cell Host Microbe 7, 463–473 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  4. 4.

    von Kockritz-Blickwede, M., Blodkamp, S. & Nizet, V. Interaction of bacterial exotoxins with neutrophil extracellular traps: impact for the infected host. Front. Microbiol. 7, 402 (2016).

    Google Scholar 

  5. 5.

    Paavonen, J. & Eggert-Kruse, W. Chlamydia trachomatis: impact on human reproduction. Hum. Reprod. Update 5, 433–447 (1999).

    CAS  Article  Google Scholar 

  6. 6.

    Fleming, D. T. & Wasserheit, J. N. From epidemiological synergy to public health policy and practice: the contribution of other sexually transmitted diseases to sexual transmission of HIV infection. Sex. Transm. Infect. 75, 3–17 (1999).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  7. 7.

    Vonck, R. A., Darville, T., O’Connell, C. M. & Jerse, A. E. Chlamydial infection increases gonococcal colonization in a novel murine coinfection model. Infect. Immun. 79, 1566–1577 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  8. 8.

    Herweg, J. A. & Rudel, T. Interaction of Chlamydiae with human macrophages. FEBS J. 283, 608–618 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Fischer, A. & Rudel, T. Subversion of cell-autonomous host defense by Chlamydia infection. Curr. Top. Microbiol. Immunol. https://doi.org/10.1007/82_2016_13 (2016).

  10. 10.

    Dicker, L. W., Mosure, D. J., Berman, S. M. & Levine, W. C. Gonorrhea prevalence and coinfection with chlamydia in women in the United States, 2000. Sex. Transm. Dis. 30, 472–476 (2003).

    Article  Google Scholar 

  11. 11.

    Criss, A. K. & Seifert, H. S. A bacterial siren song: intimate interactions between Neisseria and neutrophils. Nat. Rev. Microbiol. 10, 178–190 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  12. 12.

    Huang, Z. et al. Structural basis for activation and inhibition of the secreted chlamydia protease CPAF. Cell Host Microbe 4, 529–542 2008).

    CAS  Article  Google Scholar 

  13. 13.

    Saka, H. A. et al. Quantitative proteomics reveals metabolic and pathogenic properties of Chlamydia trachomatis developmental forms. Mol. Microbiol. 82, 1185–1203 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  14. 14.

    Chen, D. et al. Autoprocessing and self-activation of the secreted protease CPAF in Chlamydia-infected cells. Microb. Pathog. 49, 164–173 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  15. 15.

    Yang, Z., Tang, L., Zhou, Z., & Zhong, G. Autoprocessing and self-activation of the secreted protease CPAF in Chlamydia-infected cells. Microb. Pathog. 49, 164–173 (2010).

    Article  Google Scholar 

  16. 16.

    Tang, L. et al. Chlamydia-secreted protease CPAF degrades host antimicrobial peptides. Microbes Infect. 17, 402–408 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Yang, Z. et al. The Chlamydia-secreted protease CPAF promotes chlamydial survival in the mouse lower genital tract. Infect. Immun. 84, 2697–2702 (2016).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  18. 18.

    Snavely, E. A. et al. Reassessing the role of the secreted protease CPAF in Chlamydia trachomatis infection through genetic approaches. Pathog. Dis. 71, 336–351 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  19. 19.

    Frazer, L. C., O’Connell, C. M., Andrews, C. W. Jr, Zurenski, M. A. & Darville, T. Enhanced neutrophil longevity and recruitment contribute to the severity of oviduct pathology during Chlamydia muridarum infection. Infect. Immun. 79, 4029–4041 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  20. 20.

    Reeves, E. P. et al. Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416, 291–297 (2002).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  21. 21.

    Daley, J. M., Thomay, A. A., Connolly, M. D., Reichner, J. S. & Albina, J. E. Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice. J. Leukoc. Biol. 83, 64–70 (2008).

    CAS  Article  Google Scholar 

  22. 22.

    Brinkmann, V. & Zychlinsky, A. Neutrophil extracellular traps: is immunity the second function of chromatin? J. Cell Biol. 198, 773–783 2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  23. 23.

    Pettit, E. J. & Hallett, M. B. Two distinct Ca2+ storage and release sites in human neutrophils. J. Leukoc. Biol. 63, 225–232 (1998).

    CAS  Article  Google Scholar 

  24. 24.

    Bednar, M. M., Jorgensen, I., Valdivia, R. H. & McCafferty, D. G. Chlamydia protease-like activity factor (CPAF): characterization of proteolysis activity in vitro and development of a nanomolar affinity CPAF zymogen-derived inhibitor. Biochemistry 50, 7441–7443 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  25. 25.

    Bae, Y. S. et al. Identification of peptides that antagonize formyl peptide receptor-like 1-mediated signaling. J. Immunol. 173, 607–614 (2004).

    CAS  Article  Google Scholar 

  26. 26.

    Jorgensen, I. et al. The Chlamydia protease CPAF regulates host and bacterial proteins to maintain pathogen vacuole integrity and promote virulence. Cell Host Microbe 10, 21–32 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  27. 27.

    Gray, R. D. et al. Activation of conventional protein kinase C (PKC) is critical in the generation of human neutrophil extracellular traps. J. Inflamm. 10, 12 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    Hakkim, A. et al. Activation of the Raf–MEK–-ERK pathway is required for neutrophil extracellular trap formation. Nat. Chem. Biol. 7, 75–77 (2011).

    CAS  Article  Google Scholar 

  29. 29.

    von Kockritz-Blickwede, M. & Nizet, V. Innate immunity turned inside-out: antimicrobial defense by phagocyte extracellular traps. J. Mol. Med 87, 775–783 (2009).

    Article  Google Scholar 

  30. 30.

    Buchholz, K. R. & Stephens, R. S. The extracellular signal-regulated kinase/mitogen-activated protein kinase pathway induces the inflammatory factor interleukin-8 following Chlamydia trachomatis infection. Infect. Immun. 75, 5924–5929 (2007).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  31. 31.

    Darville, T. & Hiltke, T. J. Pathogenesis of genital tract disease due to Chlamydia trachomatis. J. Infect. Dis. 201, S114–S125 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  32. 32.

    Bai, H. et al. Intranasal inoculation of Chlamydia trachomatis mouse pneumonitis agent induces significant neutrophil infiltration which is not efficient in controlling the infection in mice. Immunology 114, 246–254 (2005).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  33. 33.

    Barteneva, N., Theodor, I., Peterson, E. M. & de la Maza, L. M. Role of neutrophils in controlling early stages of a Chlamydia trachomatis infection. Infect. Immun. 64, 4830–4833 (1996).

    PubMed  PubMed Central  CAS  Google Scholar 

  34. 34.

    Tan, M. & Sutterlin, C. The Chlamydia protease CPAF: caution, precautions and function. Pathog. Dis. 72, 7–9 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  35. 35.

    Prince, L. R., Whyte, M. K., Sabroe, I., & Parker, L. C. The role of TLRs in neutrophil activation. Curr. Opin. Pharmacol. 11, 397–403 2011).

    CAS  Article  Google Scholar 

  36. 36.

    Al-Younes, H. M., Rudel, T., Brinkmann, V., Szczepek, A. J. & Meyer, T. F. Low iron availability modulates the course of Chlamydia pneumoniae infection. Cell. Microbiol. 3, 427–437 (2001).

    CAS  Article  Google Scholar 

  37. 37.

    Christophe, T. et al. The synthetic peptide Trp-Lys-Tyr-Met-Val-Met-NH2 specifically activates neutrophils through FPRL1/lipoxin A4 receptors and is an agonist for the orphan monocyte-expressed chemoattractant receptor FPRL2. J. Biol. Chem. 276, 21585–21593 (2001).

    CAS  Article  Google Scholar 

  38. 38.

    Dahlgren, C. et al. The synthetic chemoattractant Trp-Lys-Tyr-Met-Val-DMet activates neutrophils preferentially through the lipoxin A(4) receptor. Blood 95, 1810–1818 (2000).

    CAS  Google Scholar 

  39. 39.

    Chen, K. et al. A critical role for the g protein-coupled receptor mFPR2 in airway inflammation and immune responses. J. Immunol. 184, 3331–3335 (2010).

    CAS  Article  Google Scholar 

  40. 40.

    Hattar, K. et al. Subthreshold concentrations of anti-proteinase 3 antibodies (c-ANCA) specifically prime human neutrophils for fMLP-induced leukotriene synthesis and chemotaxis. J. Leukoc. Biol. 69, 89–97 (2001).

    CAS  Google Scholar 

  41. 41.

    Swamydas, M., Luo, Y., Dorf, M. E. & Lionakis, M. S. Isolation of mouse neutrophils. Curr. Protoc. Immunol. 110, 3.20.21–3.20.15 (2015).

    Google Scholar 

  42. 42.

    Gonzalez, A. S., Bardoel, B. W., Harbort, C. J. & Zychlinsky, A. Induction and quantification of neutrophil extracellular traps. Methods Mol. Biol. 1124, 307–318 (2014).

    Article  Google Scholar 

  43. 43.

    Karunakaran, K., Mehlitz, A. & Rudel, T. Evolutionary conservation of infection-induced cell death inhibition among Chlamydiales. PLoS ONE 6, e22528 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  44. 44.

    de Haas, C. J. et al. Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J. Exp. Med . 199, 687–695 (2004).

    PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Yamazaki, T., Kawai, C., Yamauchi, A. & Kuribayashi, F. A highly sensitive chemiluminescence assay for superoxide detection and chronic granulomatous disease diagnosis. Trop. Med. Health 39, 41–45 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Fu, H. et al. Ligand recognition and activation of formyl peptide receptors in neutrophils. J. Leukoc. Biol. 79, 247–256 (2006).

    CAS  Article  Google Scholar 

  47. 47.

    Karlsson, J., Fu, H., Boulay, F., Bylund, J. & Dahlgren, C. The peptide Trp-Lys-Tyr-Met-Val-D-Met activates neutrophils through the formyl peptide receptor only when signaling through the formylpeptide receptor like 1 is blocked. A receptor switch with implications for signal transduction studies with inhibitors and receptor antagonists. Biochem. Pharmacol. 71, 1488–1496 (2006).

    CAS  Article  Google Scholar 

  48. 48.

    Onnheim, K., Bylund, J., Boulay, F., Dahlgren, C. & Forsman, H. Tumour necrosis factor (TNF)-α primes murine neutrophils when triggered via formyl peptide receptor-related sequence 2, the murine orthologue of human formyl peptide receptor-like 1, through a process involving the type I TNF receptor and subcellular granule mobilization. Immunology 125, 591–600 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Karunakaran, K., Subbarayal, P., Vollmuth, N. & Rudel, T. Chlamydia-infected cells shed Gp96 to prevent chlamydial re-infection. Mol. Microbiol 98, 694–711 (2015).

    CAS  Article  Google Scholar 

  50. 50.

    Durr, M. C. et al. Neutrophil chemotaxis by pathogen-associated molecular patterns - formylated peptides are crucial but not the sole neutrophil attractants produced by Staphylococcus aureus. Cell. Microbiol. 8, 207–217 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Kretschmer and A. Peschel (Univeristy of Tübingen) for providing the HL60 cell lines and HL60 expressing FPR1 and FPR2. We thank R. Valdivia and E. Snavely (Duke University) for the CPAF-deficient and complemented strain of Chlamydia, G. Zhong (University of Texas) for the CPAF antibody and P. Lüningschrör (University of Würzburg) for the mouse synectin plasmid. We are grateful to O. Söhnlein (LMU Munich) for providing the FPR2-KO mice. C. Gehrig and D. Bunsen supported the scanning and transmission electron microscopy analyses. We acknowledge J. Sühlfleisch, N. Vollmuth and H. Czotscher for technical assistance. We thank S. Gorski, R. Sivadasan and A. Demuth for critically reading the manuscript. K.R. was supported by funds of the Frauenbüro, University of Würzburg. S.D. was funded by the Career Development Fellowship from the Graduate School of Life Sciences, University of Würzburg. This work was supported by Deutsche Forschungsgemeinschaft - GRK 2157 to T.R.

Author information

Affiliations

Authors

Contributions

K.R., S.D. and T.R. conceived and designed the study. K.R. performed all of the experiments, except for the experiments shown in Figs. 3a,b and 4f, which were carried out by S.D. Data analysis was performed by K.R and S.D. B.K.P. provided active and inactive recombinant CPAF. K.R. and T.R. wrote the manuscript.

Corresponding author

Correspondence to Thomas Rudel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–8

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rajeeve, K., Das, S., Prusty, B.K. et al. Chlamydia trachomatis paralyses neutrophils to evade the host innate immune response. Nat Microbiol 3, 824–835 (2018). https://doi.org/10.1038/s41564-018-0182-y

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing