Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Specialized proteomic responses and an ancient photoprotection mechanism sustain marine green algal growth during phosphate limitation

Abstract

Marine algae perform approximately half of global carbon fixation, but their growth is often limited by the availability of phosphate or other nutrients1,2. As oceans warm, the area of phosphate-limited surface waters is predicted to increase, resulting in ocean desertification3,4. Understanding the responses of key eukaryotic phytoplankton to nutrient limitation is therefore critical5,6. We used advanced photo-bioreactors to investigate how the widespread marine green alga Micromonas commoda grows under transitions from replete nutrients to chronic phosphate limitation and subsequent relief, analysing photosystem changes and broad cellular responses using proteomics, transcriptomics and biophysical measurements. We find that physiological and protein expression responses previously attributed to stress are critical to supporting stable exponential growth when phosphate is limiting. Unexpectedly, the abundance of most proteins involved in light harvesting does not change, but an ancient light-harvesting-related protein, LHCSR, is induced and dissipates damaging excess absorbed light as heat throughout phosphate limitation. Concurrently, a suite of uncharacterized proteins with narrow phylogenetic distributions increase multifold. Notably, of the proteins that exhibit significant changes, 70% are not differentially expressed at the mRNA transcript level, highlighting the importance of post-transcriptional processes in microbial eukaryotes. Nevertheless, transcript–protein pairs with concordant changes were identified that will enable more robust interpretation of eukaryotic phytoplankton responses in the field from metatranscriptomic studies. Our results show that P-limited Micromonas responds quickly to a fresh pulse of phosphate by rapidly increasing replication, and that the protein network associated with this ability is composed of both conserved and phylogenetically recent proteome systems that promote dynamic phosphate homeostasis. That an ancient mechanism for mitigating light stress is central to sustaining growth during extended phosphate limitation highlights the possibility of interactive effects arising from combined stressors under ocean change, which could reduce the efficacy of algal strategies for optimizing marine photosynthesis.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Algal relationships and Micromonas growth under changes in phosphate availability.
Fig. 2: Proteomic changes under acclimated P-limited growth.
Fig. 3: Relationships between transcript fold change and protein fold change for differentially expressed transcripts encoding proteins that changed significantly between Plimited and Preplete.
Fig. 4: Non-photochemical quenching as a strategy for sustained growth potential during P limitation.

References

  1. Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).

    CAS  Article  PubMed  Google Scholar 

  2. Wu, J., Sunda, W., Boyle, E. A. & Karl, D. M. Phosphate depletion in the western North Atlantic. Ocean. Sci. 289, 759–762 (2000).

    CAS  Google Scholar 

  3. Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).

    CAS  PubMed  Google Scholar 

  4. Flombaum, P. et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl Acad. Sci. USA 110, 9824–9829 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Worden, A. Z. et al. Environmental science. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (2015).

    PubMed  Google Scholar 

  6. Sebastian, M. et al. Lipid remodelling is a widespread strategy in marine heterotrophic bacteria upon phosphorus deficiency. ISME J. 10, 968–978 (2016).

    CAS  PubMed  Google Scholar 

  7. Worden, A. Z. et al. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science 324, 268–272 (2009).

    CAS  PubMed  Google Scholar 

  8. Monier, A., Worden, A. Z. & Richards, T. A. Phylogenetic diversity and biogeography of the Mamiellophyceae lineage of eukaryotic phytoplankton across the oceans. Environ. Microbiol. Rep. 8, 461–469 (2016).

    CAS  PubMed  Google Scholar 

  9. Clayton, S., Lin, Y.-C., Follows, M. J. & Worden, A. Z. Co‐existence of distinct Ostreococcus ecotypes at an oceanic front. Limnol. Oceanogr. 62, 75–88 (2017).

    Google Scholar 

  10. Limardo, A. J. et al. Quantitative biogeography of picoprasinophytes establishes ecotype distributions and significant contributions to marine phytoplankton. Environ. Microbiol 19, 3219–3234 (2017).

    CAS  PubMed  Google Scholar 

  11. Countway, P. D. & Caron, D. A. Abundance and distribution of Ostreococcus sp. in the San Pedro Channel, California, as revealed by quantitative PCR. Appl. Environ. Microbiol 72, 2496–2506 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Worden, A. Z., Nolan, J. K. & Palenik, B. Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component. Limnol. Oceanogr. 49, 168–179 (2004).

    CAS  Google Scholar 

  13. Simmons, M. P. et al. Intron invasions trace algal speciation and reveal nearly identical Arctic and Antarctic Micromonas populations. Mol. Biol. Evol. 32, 2219–2235 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Not, F. et al. Late summer community composition and abundance of photosynthetic picoeukaryotes in Norwegian and Barents Seas. Limnol. Oceanogr. 50, 1677–1686 (2005).

    CAS  Google Scholar 

  15. Cuvelier, M. L. et al. Targeted metagenomics and ecology of globally important uncultured eukaryotic phytoplankton. Proc. Natl Acad. Sci. USA 107, 14679–14684 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Treusch, A. H. et al. Phytoplankton distribution patterns in the northwestern Sargasso Sea revealed by small subunit rRNA genes from plastids. ISME J. 6, 481–492 (2012).

    CAS  PubMed  Google Scholar 

  17. Lomas, M. W. et al. Two decades and counting: 24-years of sustained open ocean biogeochemical measurements in the Sargasso Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 93, 16–32 (2013).

    CAS  Google Scholar 

  18. Wurch, L. L., Bertrand, E. M., Saito, M. A., Van Mooy, B. A. & Dyhrman, S. T. Proteome changes driven by phosphorus deficiency and recovery in the brown tide-forming alga Aureococcus anophagefferens. PLoS ONE 6, e28949 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hsieh, S. I. et al. The proteome of copper, iron, zinc, and manganese micronutrient deficiency in Chlamydomonas reinhardtii. Mol. Cell Proteom. 12, 65–86 (2013).

    Google Scholar 

  20. Dyhrman, S. T. et al. The transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response. PLoS ONE 7, e33768 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Dyhrman, S. T. et al. Long serial analysis of gene expression for gene discovery and transcriptome profiling in the widespread marine coccolithophore Emiliania huxleyi. Appl. Environ. Microbiol. 72, 252–260 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Himeoka, Y. & Kaneko, K. Theory for transitions between exponential and stationary phases: universal laws for lag time. Phys. Rev. X 7, 021049 (2017).

    Google Scholar 

  23. Yang, Z. K. et al. Systems-level analysis of the metabolic responses of the diatom Phaeodactylum tricornutum to phosphorus stress. Environ. Microbiol 16, 1793–1807 (2014).

    CAS  PubMed  Google Scholar 

  24. Thompson, A. W., Huang, K., Saito, M. A.. & Chisholm, S. W. Transcriptome response of high- and low-light-adapted Prochlorococcus strains to changing iron availability. ISME J. 5, 1580–1594 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Grossman, A. R. & Aksoy, M. in Annual Plant Reviews Vol. 48: Phosphorus Metabolism in Plants (eds. Plaxton, W. C. & Lambers, H.) Ch. 12 (Wiley, Hoboken, 2015).

  26. Plaxton, W. C. & Tran, H. T. Metabolic adaptations of phosphate-starved plants. Plant Physiol. 156, 1006–1015 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Keeling, P. J. et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 12, e1001889 (2014).

    PubMed  PubMed Central  Google Scholar 

  28. Cuvelier, M. L. et al. Responses of the picoprasinophyte Micromonas commoda to light and ultraviolet stress. PLoS ONE 12, e0172135 (2017).

    PubMed  PubMed Central  Google Scholar 

  29. Lan, P., Li, W. & Schmidt, W. Complementary proteome and transcriptome profiling in phosphate-deficient Arabidopsis roots reveals multiple levels of gene regulation. Mol. Cell Proteom. 11, 1156–1166 (2012).

    Google Scholar 

  30. Waltman, P. H. et al. Identifying aspects of the post-transcriptional program governing the proteome of the green alga Micromonas pusilla. PLoS ONE 11, e0155839 (2016).

    PubMed  PubMed Central  Google Scholar 

  31. Harvey, R., Dezi, V., Pizzinga, M. & Willis, A. E. Post-transcriptional control of gene expression following stress: the role of RNA-binding proteins. Biochem. Soc. Trans. 45, 1007–1014 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Monier, A. et al. Phosphate transporters in marine phytoplankton and their viruses: cross-domain commonalities in viral-host gene exchanges. Environ. Microbiol. 14, 162–176 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Le Bihan, T. et al. Shotgun proteomic analysis of the unicellular alga Ostreococcus tauri. J. Proteom. 74, 2060–2070 (2011).

    CAS  Google Scholar 

  34. Halsey, K. H., Milligan, A. J. & Behrenfeld, M. J. Contrasting strategies of photosynthetic energy utilization drive lifestyle strategies in ecologically important picoeukaryotes. Metabolites 4, 260–280 (2014).

    PubMed  PubMed Central  Google Scholar 

  35. Bender, S. J., Durkin, C. A., Berthiaume, C. T., Morales, R. L. & Armbrust, E. V. Transcriptional responses of three model diatoms to nitrate limitation of growth. Front. Marine Sci. https://doi.org/10.3389/fmars.2014.00003 (2014).

  36. Lommer, M. et al. Genome and low-iron response of an oceanic diatom adapted to chronic iron limitation. Genome Biol. 13, R66 (2012) .

  37. Parkhill, J. P., Maillet, G. & Cullen, J. J. Fluorescence-based maximum quantum yield for PSII as a diagnostic of nutrient stress. J. Phycol. 37, 517–529 (2001).

    Google Scholar 

  38. Kromdijk, J. et al. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354, 857–861 (2016).

    CAS  PubMed  Google Scholar 

  39. Peers, G. et al. An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462, 518–521 (2009).

    CAS  PubMed  Google Scholar 

  40. Lepetit, B. et al. The diatom Phaeodactylum tricornutum adjusts NPQ capacity in response to dynamic light via fine-tuned Lhcx and xanthophyll cycle pigment synthesis. New Phytol. 214, 205–218 (2016).

  41. Goss, R. & Lepetit, B. Biodiversity of NPQ. J. Plant Physiol. 172, 13–32 (2015).

    CAS  PubMed  Google Scholar 

  42. Maat, D. S., Crawfurd, K. J., Timmermans, K. R. & Brussaard, C. P. Elevated CO2 and phosphate limitation favor Micromonas pusilla through stimulated growth and reduced viral impact. Appl. Environ. Microbiol 80, 3119–3127 (2014).

    PubMed  PubMed Central  Google Scholar 

  43. Moseley, J. L., Chang, C. W. & Grossman, A. R. Genome-based approaches to understanding phosphorus deprivation responses and PSR1 control in Chlamydomonas reinhardtii. Eukaryot. Cell 5, 26–44 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Smriga, S., Fernandez, V. I., Mitchell, J. G. & Stocker, R. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. Proc. Natl Acad. Sci. USA 113, 1576–1581 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, W. K. W., McLaughlin, F. A., Lovejoy, C. & Carmack, E. C. Smallest algae thrive as the Arctic Ocean freshens. Science 326, 539 (2009).

    CAS  PubMed  Google Scholar 

  46. Wilson, S. T. et al. Hydrogen cycling by the unicellular marine diazotroph Crocosphaera watsonii strain WH8501. Appl. Environ. Microbiol 76, 6797–6803 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Porter, K. & Feig, Y. S. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25, 943–948 (1980).

    Google Scholar 

  48. Murphy, J. & Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36 (1962).

    CAS  Google Scholar 

  49. Pennington, J. T. & Chavez, F. P. Seasonal fluctuations of temperature, salinity, nitrate, chlorophyll and primary production at station H3/M1 over 1989–1996 in Monterey Bay, California. Deep Sea Res. Part II 47, 947–974 (2000).

    CAS  Google Scholar 

  50. Van Heukelem, L. & Thomas, C. S. Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J. Chromatogr. A 910, 31–49 (2001).

    PubMed  Google Scholar 

  51. Anderson, R. Algal Culturing Techniques (Elsevier, New York, 2005).

  52. McCarthy, J. J. in Physiological Bases of Phytoplankton Ecology (ed. Platt, T.) 211–233 (Canadian Bulletin of Fisheries and Aquatic Sciences, 1981).

  53. McCarthy, J. J. & Goldman, J. C. Nitrogenous nutrition of marine phytoplankton in nutrient-depleted waters. Science 203, 670–672 (1979).

    CAS  PubMed  Google Scholar 

  54. Keller, M. D., Selvin, R. C., Claus, W. & Guillard, R. R. L. Media for the culturing of oceanic ultraplankton. J. Phycol. 23, 633 (1987).

    Google Scholar 

  55. Callister, S. J. et al. Analysis of biostimulated microbial communities from two field experiments reveals temporal and spatial differences in proteome profiles. Environ. Sci. Technol. 44, 8897–8903 (2010).

    CAS  PubMed  Google Scholar 

  56. Fic, E., Kedracka-Krok, S., Jankowska, U., Pirog, A. & Dziedzicka-Wasylewska, M. Comparison of protein precipitation methods for various rat brain structures prior to proteomic analysis. Electrophoresis 31, 3573–3579 (2010).

    CAS  PubMed  Google Scholar 

  57. Lipton, M. S. et al. Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags. Proc. Natl Acad. Sci. USA 99, 11049–11054 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Robidart, J. et al. Characterizing microbial community and geochemical dynamics at hydrothermal vents using osmotically driven continuous fluid samplers. Environ. Sci. Technol. 47, 4399–4407 (2013).

    CAS  PubMed  Google Scholar 

  59. Kelly, R. T. et al. Chemically etched open tubular and monolithic emitters for nanoelectrospray ionization mass spectrometry. Anal. Chem. 78, 7796–7801 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Crowell, K. L. et al. LC-IMS-MS feature finder: detecting multidimensional liquid chromatography, ion mobility and mass spectrometry features in complex datasets. Bioinformatics 29, 2804–2805 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Monroe, M. E. et al. VIPER: an advanced software package to support high-throughput LC-MS peptide identification. Bioinformatics 23, 2021–2023 (2007).

    CAS  PubMed  Google Scholar 

  62. van Baren, M. J. et al. Evidence-based green algal genomics reveals marine diversity and ancestral characteristics of land plants. BMC Genomics 17, 267 (2016).

  63. Stanley, J. R. et al. A statistical method for assessing peptide identification confidence in accurate mass and time tag proteomics. Anal. Chem. 83, 6135–6140 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Polpitiya, A. D. et al. DAnTE: a statistical tool for quantitative analysis of -omics data. Bioinformatics 24, 1556–1558 (2008).

    CAS  PubMed  Google Scholar 

  65. Callister, S. J. et al. Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics. J. Proteome Res. 5, 277–286 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Duanmu, D. et al. Marine algae and land plants share conserved phytochrome signaling systems. Proc. Natl Acad. Sci. USA 111, 15827–15832 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).

  69. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).

  70. Bun-Ya, M., Nishimura, M., Harashima, S. & Oshima, Y. The PH084 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter. Mol. Cell. Biol. 11, 3229–3238 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Rubin, G. M. Three forms of the 5.8-S ribosomal RNA species in Saccharomyces cerevisiae. Eur. J. Biochem. 41, 197–202 (1974).

    CAS  PubMed  Google Scholar 

  72. Bailleul, B. et al. An atypical member of the light-harvesting complex stress-related protein family modulates diatom responses to light. Proc. Natl Acad. Sci. USA 107, 18214–18219 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Katoh, K., Kuma, K., Toh, H. & Miyata, T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 33, 511–518 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Neilson, J. A. D., Rangsrikitphoti, P. & Durnford, D. G. Evolution and regulation of Bigelowiella natans light-harvesting antenna system. J. Plant Physiol. 217, 68–76 (2017).

  75. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Burki, F., Shalchian-Tabrizi, K. & Pawlowski, J. Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes. Biol. Lett. 4, 366–369 (2008).

Download references

Acknowledgements

We thank D. Au, L. Bird, Z. Kolber, R. Thompson and S. Tozzi for contributions to photo-bioreactor design, construction and refinement. We thank M. Ares, K. Halsey, K. Hoadley and J. Barry for helpful discussions and S. Sudek for data deposition. Proteomics was performed at EMSL, a PNNL facility sponsored by DOE’s Office of Biological and Environmental Research. This research was supported by the Packard Foundation, Gordon and Betty Moore Foundation Award GBMF3788 (A.Z.W.), National Science Foundation NSF-IOS0843119 (A.Z.W. and U.G.) and US Department of Energy DOE-DE-SC0004765 (A.Z.W., S.J.C. and R.D.S.).

Author information

Authors and Affiliations

Authors

Contributions

A.Z.W., E.N.R., J.G. and V.J. designed the experiments, E.N.R., J.G. and V.J. performed the experiments, flow cytometry and nutrient measurements with contributions from L.S. and V.A.E. S.W. performed NPQ and pigment analyses. C.K.A., S.O.P., R.D.S., S.J.C. performed proteomic analyses and J.G. and S.J.C. further analysed proteomics data with input from A.Z.W. R.D., G.K-R. and C-L.W. performed RNA-seq. R.D. and V.J. analysed RNA-seq with input from A.Z.W. and U.G., C.J.C. performed protein taxonomic distribution studies, C.B. performed phylogenetic analysis and T.A.R. and D.S.M. performed yeast complementation. D.K. was responsible for all technical aspects of the photo-bioreactors. J.G., S.W., U.G. and A.Z.W. wrote the manuscript and all authors read or edited the manuscript.

Corresponding author

Correspondence to Alexandra Z. Worden.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–13 and Supplementary Figure References.

Reporting Summary

Supplementary Data 1

P values associated with various tests.

Supplementary Data 2

(A) Proteins that changed (Q < 0.05) or (B) exhibited significant fold changes (Q < 0.05, fold change ≥2) in relative abundance between phases, as computed from average protein abundances from biological duplicates (technical triplicate) over sampled time points. (C) Presence of UP cluster proteins exhibiting ≥3 fold change (Q < 0.05) and lacking known domains, in other taxa, and those ≥2 fold change. (D) MMETSP organisms and peptide files analysed.

Supplementary Data 3

Fold changes of transcripts and protein pairs with significant changes (significance as specified in file) between the PLIMITED and PREPLETE phases. (B) Concordant transcript protein pairs from P-bioreactor experiment and corresponding transcript fold change under N deprivation.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Wilken, S., Jimenez, V. et al. Specialized proteomic responses and an ancient photoprotection mechanism sustain marine green algal growth during phosphate limitation. Nat Microbiol 3, 781–790 (2018). https://doi.org/10.1038/s41564-018-0178-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0178-7

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing