Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Retraction of DNA-bound type IV competence pili initiates DNA uptake during natural transformation in Vibrio cholerae

Abstract

Natural transformation is a broadly conserved mechanism of horizontal gene transfer in bacterial species that can shape evolution and foster the spread of antibiotic resistance determinants, promote antigenic variation and lead to the acquisition of novel virulence factors. Surface appendages called competence pili promote DNA uptake during the first step of natural transformation1; however, their mechanism of action has remained unclear owing to an absence of methods to visualize these structures in live cells. Here, using the model naturally transformable species Vibrio cholerae and a pilus-labelling method, we define the mechanism for type IV competence pilus-mediated DNA uptake during natural transformation. First, we show that type IV competence pili bind to extracellular double-stranded DNA via their tip and demonstrate that this binding is critical for DNA uptake. Next, we show that type IV competence pili are dynamic structures and that pilus retraction brings tip-bound DNA to the cell surface. Finally, we show that pilus retraction is spatiotemporally coupled to DNA internalization and that sterically obstructing pilus retraction prevents DNA uptake. Together, these results indicate that type IV competence pili directly bind to DNA via their tip and mediate DNA internalization through retraction during this conserved mechanism of horizontal gene transfer.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The tips of type IV competence pili directly bind to DNA.
Fig. 2: Type IV competence pilus dynamic activity and DNA binding are critical for DNA internalization.
Fig. 3: Pilus retraction is required for DNA uptake.
Fig. 4: Residual retraction in ΔpilT mutants allows for low rates of transformation.

References

  1. 1.

    Chen, I. & Dubnau, D. DNA uptake during bacterial transformation. Nat. Rev. Microbiol. 2, 241–249 (2004).

    CAS  Article  Google Scholar 

  2. 2.

    Hepp, C. & Maier, B. Kinetics of DNA uptake during transformation provide evidence for a translocation ratchet mechanism. Proc. Natl Acad. Sci. USA 113, 12467–12472 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    Muschiol, S., Balaban, M., Normark, S. & Henriques-Normark, B. Uptake of extracellular DNA: competence induced pili in natural transformation of Streptococcus pneumoniae. Bioessays 37, 426–435 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    Graupner, S., Weger, N., Sohni, M. & Wackernagel, W. Requirement of novel competence genes pilT and pilU of Pseudomonas stutzeri for natural transformation and suppression of pilT deficiency by a hexahistidine tag on the type IV pilus protein PilAI. J. Bacteriol. 183, 4694–4701 (2001).

    CAS  Article  Google Scholar 

  5. 5.

    Laurenceau, R. et al. A type IV pilus mediates DNA binding during natural transformation in Streptococcus pneumoniae. PLoS Pathog. 9, e1003473 (2013).

    CAS  Article  Google Scholar 

  6. 6.

    Meibom, K. L., Blokesch, M., Dolganov, N. A., Wu, C. Y. & Schoolnik, G. K. Chitin induces natural competence in Vibrio cholerae. Science 310, 1824–1827 (2005).

    CAS  Article  Google Scholar 

  7. 7.

    Seitz, P. & Blokesch, M. DNA-uptake machinery of naturally competent Vibrio cholerae. Proc. Natl Acad. Sci. USA 110, 17987–17992 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    Ellison, C. K. et al. Obstruction of pilus retraction stimulates bacterial surface sensing. Science 358, 535–538 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    Hepp, C., Gangel, H., Henseler, K., Gunther, N. & Maier, B. Single-stranded DNA uptake during gonococcal transformation. J. Bacteriol. 198, 2515–2523 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    Duffin, P. M. & Seifert, H. S. Genetic transformation of Neisseria gonorrhoeae shows a strand preference. FEMS Microbiol. Lett. 334, 44–48 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    Assalkhou, R. et al. The outer membrane secretin PilQ from Neisseria meningitidis binds DNA. Microbiology 153, 1593–1603 (2007).

    CAS  Article  Google Scholar 

  12. 12.

    Burkhardt, J., Vonck, J. & Averhoff, B. Structure and function of PilQ, a secretin of the DNA transporter from the thermophilic bacterium Thermus thermophilus HB27. J. Biol. Chem. 286, 9977–9984 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    Ng, D. et al. The Vibrio cholerae minor pilin TcpB initiates assembly and retraction of the toxin-coregulated pilus. PLoS Pathog. 12, e1006109 (2016).

    Article  Google Scholar 

  14. 14.

    Nguyen, Y. et al. Pseudomonas aeruginosa minor pilins prime type IVa pilus assembly and promote surface display of the PilY1 adhesin. J. Biol. Chem. 290, 601–611 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    Suckow, G., Seitz, P. & Blokesch, M. Quorum sensing contributes to natural transformation of Vibrio cholerae in a species-specific manner. J. Bacteriol. 193, 4914–4924 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    Gangel, H. et al. Concerted spatio-temporal dynamics of imported DNA and ComE DNA uptake protein during gonococcal transformation. PLoS Pathog. 10, e1004043 (2014).

    Article  Google Scholar 

  17. 17.

    Seitz, P. et al. ComEA is essential for the transfer of external DNA into the periplasm in naturally transformable Vibrio cholerae cells. PLoS Genet. 10, e1004066 (2014).

    Article  Google Scholar 

  18. 18.

    Borgeaud, S., Metzger, L. C., Scrignari, T. & Blokesch, M. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science 347, 63–67 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    Watnick, P. I. & Kolter, R. Steps in the development of a Vibrio cholerae El Tor biofilm. Mol. Microbiol. 34, 586–595 (1999).

    CAS  Article  Google Scholar 

  20. 20.

    Dietrich, M., Mollenkopf, H., So, M. & Friedrich, A. Pilin regulation in the pilT mutant of Neisseria gonorrhoeae strain MS11. FEMS Microbiol. Lett. 296, 248–256 (2009).

    CAS  Article  Google Scholar 

  21. 21.

    Hepp, C. & Maier, B. Bacterial translocation ratchets: shared physical principles with different molecular implementations: how bacterial secretion systems bias Brownian motion for efficient translocation of macromolecules. Bioessays 39, e201700099 (2017).

    Article  Google Scholar 

  22. 22.

    Burrows, L. L. Pseudomonas aeruginosa twitching motility: type IV pili in action. Annu. Rev. Microbiol. 66, 493–520 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    Craig, L., Pique, M. E. & Tainer, J. A. Type IV pilus structure and bacterial pathogenicity. Nat. Rev. Microbiol. 2, 363–378 (2004).

    CAS  Article  Google Scholar 

  24. 24.

    Chang, Y. W. et al. Architecture of the type IVa pilus machine. Science 351, aad2001 (2016).

    Article  Google Scholar 

  25. 25.

    Gold, V. A., Salzer, R., Averhoff, B. & Kuhlbrandt, W. Structure of a type IV pilus machinery in the open and closed state. eLife 4, e07380 (2015).

    Article  Google Scholar 

  26. 26.

    Biais, N., Higashi, D., So, M. & Ladoux, B. Techniques to measure pilus retraction forces. Methods Mol. Biol. 799, 197–216 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    Cehovin, A. et al. Specific DNA recognition mediated by a type IV pilin. Proc. Natl Acad. Sci. USA 110, 3065–3070 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    Berry, J. L. et al. A comparative structure/function analysis of two type IV pilin DNA receptors defines a novel mode of DNA binding. Structure 24, 926–934 (2016).

    CAS  Article  Google Scholar 

  29. 29.

    Skerker, J. M. & Berg, H. C. Direct observation of extension and retraction of type IV pili. Proc. Natl Acad. Sci. USA 98, 6901–6904 (2001).

    CAS  Article  Google Scholar 

  30. 30.

    Maier, B. et al. Single pilus motor forces exceed 100 pN. Proc. Natl Acad. Sci. USA 99, 16012–16017 (2002).

    CAS  Article  Google Scholar 

  31. 31.

    Miller, V. L., DiRita, V. J. & Mekalanos, J. J. Identification of toxS, a regulatory gene whose product enhances ToxR-mediated activation of the cholera toxin promoter. J. Bacteriol. 171, 1288–1293 (1989).

    CAS  Article  Google Scholar 

  32. 32.

    Dalia, A. B., Lazinski, D. W. & Camilli, A. Identification of a membrane-bound transcriptional regulator that links chitin and natural competence in Vibrio cholerae. mBio 5, e01028-13 (2014).

    Article  Google Scholar 

  33. 33.

    Lo Scrudato, M. & Blokesch, M. The regulatory network of natural competence and transformation of Vibrio cholerae. PLoS Genet. 8, e1002778 (2012).

    CAS  Article  Google Scholar 

  34. 34.

    Lo Scrudato, M. & Blokesch, M. A transcriptional regulator linking quorum sensing and chitin induction to render Vibrio cholerae naturally transformable. Nucleic Acids Res. 41, 3644–3658 (2013).

    CAS  Article  Google Scholar 

  35. 35.

    Dalia, A. B., McDonough, E. & Camilli, A. Multiplex genome editing by natural transformation. Proc. Natl Acad. Sci. USA 111, 8937–8942 (2014).

    CAS  Article  Google Scholar 

  36. 36.

    Zhu, J. et al. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc. Natl Acad. Sci. USA 99, 3129–3134 (2002).

    CAS  Article  Google Scholar 

  37. 37.

    Dalia, T. N. et al. Enhancing multiplex genome editing by natural transformation (MuGENT) via inactivation of ssDNA exonucleases. Nucleic Acids Res. 45, 7527–7537 (2017).

    CAS  Article  Google Scholar 

  38. 38.

    Petersen, B., Petersen, T. N., Andersen, P., Nielsen, M. & Lundegaard, C. A generic method for assignment of reliability scores applied to solvent accessibility predictions. BMC Struct. Biol. 9, 51 (2009).

    Article  Google Scholar 

  39. 39.

    Hayes, C. A., Dalia, T. N. & Dalia, A. B. Systematic genetic dissection of PTS in Vibrio cholerae uncovers a novel glucose transporter and a limited role for PTS during infection of a mammalian host. Mol. Microbiol. 104, 568–579 (2017).

    CAS  Article  Google Scholar 

  40. 40.

    Ducret, A., Quardokus, E. M. & Brun, Y. V. MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis. Nat. Microbiol. 1, 16077 (2016).

    CAS  Article  Google Scholar 

  41. 41.

    Collins, T. J. ImageJ for microscopy. Biotechniques 43, 25–30 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Camilli, F. Yildiz, D. Kearns, N. Greene, C. Berne and B. LaSarre for critical comments on the manuscript. We also thank members of the Biais lab, L. Khosla, R. Rayyan and A. Ratkiewicz for assistance with micropillar assays. This work was supported by grant R35GM122556 from the National Institutes of Health to Y.V.B., by grant AI118863 from the National Institutes of Health to A.B.D., by the National Science Foundation fellowship 1342962 to C.K.E. and by grant AI116566 from the National Institutes of Health to N.B.

Author information

Affiliations

Authors

Contributions

C.K.E. and A.B.D. designed and coordinated the overall study. A.B.D., C.K.E., T.N.D., J.C.-Y.W., A.V.C. and N.B. performed the experiments. Y.V.B., A.B.D., C.K.E., T.N.D. and N.B. analysed and interpreted the data. C.K.E. and A.B.D. wrote the manuscript with help from Y.V.B.

Corresponding author

Correspondence to Ankur B. Dalia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Supplementary Figures 1–15, Supplementary Tables 1–3.

Reporting Summary

Supplementary Video 1

pilA-Cys ΔpilT cell with labelled pili bound to labelled DNA.

Supplementary Video 2

Sheared labelled pilus bound to labelled DNA.

Supplementary Video 3

Sheared labelled pilus bound to labelled DNA.

Supplementary Video 4

pilA-Cys cells extending and retracting labelled pili.

Supplementary Video 5

pilA-Cys cell with labelled pili retracting while bound to labelled DNA.

Supplementary Video 6

pilA-Cys cell with labelled pili retracting while bound to labelled DNA.

Supplementary Video 7

pilA-Cys VC0859K148Q VC0858R165Q cells extending and retracting labelled pili.

Supplementary Video 8

pilA-Cys VC0858R168Q cells extending and retracting labelled pili.

Supplementary Video 9

Formation of ComEA-mCherry focus after retraction of labelled pilus by a pilA-Cys cell.

Supplementary Video 10

pilA-Cys cells extending and retracting pili co-labelled with dye and biotin-maleimide.

Supplementary Video 11

pilA-Cys cells blocked for pilus retraction after pili colabelled with dye and biotin-maleimide were treated with neutravidin.

Supplementary Video 12

pilA-Cys ΔpilT cell with labelled pili retracting a pilus.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ellison, C.K., Dalia, T.N., Vidal Ceballos, A. et al. Retraction of DNA-bound type IV competence pili initiates DNA uptake during natural transformation in Vibrio cholerae. Nat Microbiol 3, 773–780 (2018). https://doi.org/10.1038/s41564-018-0174-y

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing