Abstract

Plasmodium falciparum, the most virulent agent of human malaria, shares a recent common ancestor with the gorilla parasite Plasmodium praefalciparum. Little is known about the other gorilla- and chimpanzee-infecting species in the same (Laverania) subgenus as P. falciparum, but none of them are capable of establishing repeated infection and transmission in humans. To elucidate underlying mechanisms and the evolutionary history of this subgenus, we have generated multiple genomes from all known Laverania species. The completeness of our dataset allows us to conclude that interspecific gene transfers, as well as convergent evolution, were important in the evolution of these species. Striking copy number and structural variations were observed within gene families and one, stevor, shows a host-specific sequence pattern. The complete genome sequence of the closest ancestor of P. falciparum enables us to estimate the timing of the beginning of speciation to be 40,000–60,000 years ago followed by a population bottleneck around 4,000–6,000 years ago. Our data allow us also to search in detail for the features of P. falciparum that made it the only member of the Laverania able to infect and spread in humans.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publishers note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Prugnolle, F. et al. African great apes are natural hosts of multiple related malaria species, including Plasmodium falciparum. Proc. Natl Acad. Sci. USA 107, 1458–1463 (2010).

  2. 2.

    Liu, W. et al. Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature 467, 420–425 (2010).

  3. 3.

    Ollomo, B. et al. A new malaria agent in African hominids. PLoS Pathog. 5, e1000446 (2009).

  4. 4.

    Liu, W. et al. Multigenomic delineation of Plasmodium species of the Laverania subgenus infecting wild-living chimpanzees and gorillas. Genome Biol. Evol. 8, 1929–1939 (2016).

  5. 5.

    Boundenga, L. et al. Diversity of malaria parasites in great apes in Gabon. Malar. J. 14, 111 (2015).

  6. 6.

    Sundararaman, S. A. et al. Genomes of cryptic chimpanzee Plasmodium species reveal key evolutionary events leading to human malaria. Nat. Commun. 7, 11078 (2016).

  7. 7.

    Silva, J. C., Egan, A., Arze, C., Spouge, J. L. & Harris, D. G. A new method for estimating species age supports the coexistence of malaria parasites and their mammalian hosts. Mol. Biol. Evol. 32, 1354–1364 (2015).

  8. 8.

    Volkman, S. K. et al. Recent origin of Plasmodium falciparum from a single progenitor. Science 293, 482–484 (2001).

  9. 9.

    Otto, T. D. et al. Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts. Nat. Commun. 5, 4754 (2014).

  10. 10.

    Larremore, D. B. et al. Ape parasite origins of human malaria virulence genes. Nat. Commun. 6, 8368 (2015).

  11. 11.

    Pacheco, M. A. et al. Timing the origin of human malarias: the lemur puzzle. BMC Evol. Biol. 11, 299 (2011).

  12. 12.

    Behar, D. M. et al. The dawn of human matrilineal diversity. Am. J. Hum. Genet. 82, 1130–1140 (2008).

  13. 13.

    Palstra, F. P. & Fraser, D. J. Effective/census population size ratio estimation: a compendium and appraisal. Ecol. Evol. 2, 2357–2365 (2012).

  14. 14.

    Roy, S. W. The Plasmodium gaboni genome illuminates allelic dimorphism of immunologically important surface antigens in P. falciparum. Infect. Genet. Evol. 36, 441–449 (2015).

  15. 15.

    Tanabe, K., Mackay, M., Goman, M. & Scaife, J. G. Allelic dimorphism in a surface antigen gene of the malaria parasite Plasmodium falciparum. J. Mol. Biol. 195, 273–287 (1987).

  16. 16.

    Yasukochi, Y., Naka, I., Patarapotikul, J., Hananantachai, H. & Ohashi, J. Genetic evidence for contribution of human dispersal to the genetic diversity of EBA-175 in Plasmodium falciparum. Malar. J. 14, 293 (2015).

  17. 17.

    GEN Malaria, Band, G., Rockett, K. A., Spencer, C. C. & Kwiatkowski, D. P. A novel locus of resistance to severe malaria in a region of ancient balancing selection. Nature 526, 253–257 (2015).

  18. 18.

    Makanga, B. et al. Ape malaria transmission and potential for ape-to-human transfers in Africa. Proc. Natl Acad. Sci. USA 113, 5329–5334 (2016).

  19. 19.

    Wanaguru, M., Liu, W., Hahn, B. H., Rayner, J. C. & Wright, G. J. RH5-Basigin interaction plays a major role in the host tropism of Plasmodium falciparum. Proc. Natl Acad. Sci. USA 110, 20735–20740 (2013).

  20. 20.

    Wright, K. E. et al. Structure of malaria invasion protein RH5 with erythrocyte basigin and blocking antibodies. Nature 515, 427–430 (2014).

  21. 21.

    Triglia, T., Thompson, J. K. & Cowman, A. F. An EBA175 homologue which is transcribed but not translated in erythrocytic stages of Plasmodium falciparum. Mol. Biochem. Parasitol. 116, 55–63 (2001).

  22. 22.

    Farrell, A. et al. A DOC2 protein identified by mutational profiling is essential for apicomplexan parasite exocytosis. Science 335, 218–221 (2012).

  23. 23.

    Ramiro, R. S. et al. Hybridization and pre-zygotic reproductive barriers in Plasmodium. Proc. Biol. Sci. 282, 20143027 (2015).

  24. 24.

    Eksi, S. et al. Malaria transmission-blocking antigen, Pfs230, mediates human red blood cell binding to exflagellating male parasites and oocyst production. Mol. Microbiol. 61, 991–998 (2006).

  25. 25.

    Mundwiler-Pachlatko, E. & Beck, H. P. Maurer’s clefts, the enigma of Plasmodium falciparum. Proc. Natl Acad. Sci. USA 110, 19987–19994 (2013).

  26. 26.

    Bethke, L. L. et al. Duplication, gene conversion, and genetic diversity in the species-specific acyl-CoA synthetase gene family of Plasmodium falciparum. Mol. Biochem. Parisitol. 170, 65–73 (2010).

  27. 27.

    Cunningham, D., Lawton, J., Jarra, W., Preiser, P. & Langhorne, J. The pir multigene family of Plasmodium: antigenic variation and beyond. Mol. Biochem. Parasitol. 170, 65–73 (2010).

  28. 28.

    Niang, M. et al. STEVOR is a Plasmodium falciparum erythrocyte binding protein that mediates merozoite invasion and rosetting. Cell Host Microbe 16, 81–93 (2014).

  29. 29.

    Kraemer, S. M. & Smith, J. D. A family affair: var genes, PfEMP1 binding, and malaria disease. Curr. Opin. Microbiol. 9, 374–380 (2006).

  30. 30.

    Gardner, M. J. et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498–511 (2002).

  31. 31.

    Bordbar, B. et al. Genetic diversity of VAR2CSA ID1-DBL2Xb in worldwide Plasmodium falciparum populations: impact on vaccine design for placental malaria. Infect. Genet. Evol. 25, 81–92 (2014).

  32. 32.

    Frank, M., Dzikowski, R., Amulic, B. & Deitsch, K. Variable switching rates of malaria virulence genes are associated with chromosomal position. Mol. Microbiol. 64, 1486–1498 (2007).

  33. 33.

    Scally, A. & Durbin, R. Revising the human mutation rate: implications for understanding human evolution. Nat. Rev. Genet. 13, 745–753 (2012).

  34. 34.

    Carter, R. & Mendis, K. N. Evolutionary and historical aspects of the burden of malaria. Clin. Microbiol. Rev. 15, 564–594 (2002).

  35. 35.

    Auburn, S. An effective method to purify Plasmodium falciparum DNA directly from clinical blood samples for whole genome high-throughput sequencing. PLoS ONE 6, e22213 (2011).

  36. 36.

    Oyola, S. O. et al. Optimized whole-genome amplification strategy for extremely AT-biased template. DNA Res. 21, 661–671 (2014).

  37. 37.

    Oyola, S. O. et al. Whole genome sequencing of Plasmodium falciparum from dried blood spots using selective whole genome amplification. Malar J. 5, 597 (2016).

  38. 38.

    Boissiere, A. et al. Isolation of Plasmodium falciparum by flow-cytometry: implications for single-trophozoite genotyping and parasite DNA purification for whole-genome high-throughput sequencing of archival samples. Malar. J. 11, 163 (2012).

  39. 39.

    Quail, M. A. et al. Optimal enzymes for amplifying sequencing libraries. Nat. Methods 9, 10–11 (2012).

  40. 40.

    Manske, H. & Kwiatkowski, D. SNP-o-matic. Bioinformatics 25, 2434–2435 (2009).

  41. 41.

    Chin, C. S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563–569 (2013).

  42. 42.

    Assefa, S., Keane, T. M., Otto, T. D., Newbold, C. & Berriman, M. ABACAS: algorithm-based automatic contiguation of assembled sequences. Bioinformatics 25, 1968–1969 (2009).

  43. 43.

    Carver, T. et al. Artemis and ACT: viewing, annotation and comparing sequences stored in relational database. Bioinformatics 24, 2672–2676 (2008).

  44. 44.

    Otto, T. D., Sanders, M., Berriman, M. & Newbold, C. Iterative Correction of Reference Nucleotides (iCORN) using second generation sequencing technology. Bioinformatics 26, 1704–1707 (2010).

  45. 45.

    English, A. C. et al. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS ONE 7, e47768 (2012).

  46. 46.

    Otto, T. D. From sequence mapping to genome assemblies. Methods Mol. Biol. 1201, 19–50 (2015).

  47. 47.

    Otto, T. D., Dillon, G. P., Degrave, W. S. & Berriman, M. RATT: Rapid Annotation Transfer Tool. Nucleic Acids Res. 39, e57 (2011).

  48. 48.

    Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).

  49. 49.

    Carver, T. BamView: visualizing and interpretation of next-generation sequencing read. Brief Bioinform. 14, 203–212 (2013).

  50. 50.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

  51. 51.

    McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

  52. 52.

    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

  53. 53.

    Li, L., Stoeckert, C. J.Jr. & Roos, D. S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189 (2003).

  54. 54.

    Jordan, G. & Goldman, N. The effects of alignment error and alignment filtering on the sitewise detection of positive selection. Mol. Biol. Evol. 29, 1125–1139 (2012).

  55. 55.

    Loytynoja, A. & Goldman, N. An algorithm for progressive multiple alignment of sequences with insertions. Proc. Natl Acad. Sci. USA 102, 10557–10562 (2005).

  56. 56.

    Loytynoja, A. & Goldman, N. Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science 320, 1632–1635 (2008).

  57. 57.

    Fletcher, W. & Yang, Z. The effect of insertions, deletions, and alignment errors on the branch-site test of positive selection. Mol. Biol. Evol. 27, 2257–2267 (2010).

  58. 58.

    Markova-Raina, P. & Petrov, D. High sensitivity to aligner and high rate of false positives in the estimates of positive selection in the 12 Drosophila genomes. Genome Res. 21, 863–874 (2011).

  59. 59.

    Morgulis, A., Gertz, E. M., Schäffer, A. A. & Agarwala, R. A fast and symmetric DUST implementation to mask low-complexity DNA sequences. J. Comput. Biol. 13, 1028–1040 (2006).

  60. 60.

    Wootton, J. C. & Federhen, S. Statistics of local complexity in amino acid sequences and sequence databases. Comput. Chem. 17, 149–163 (1993).

  61. 61.

    Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).

  62. 62.

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

  63. 63.

    Shimodaira, H. & Hasegawa, M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol. Biol. Evol. 16, 1114 (1999).

  64. 64.

    Castoe, T. A. et al. Evidence for an ancient adaptive episode of convergent molecular evolution. Proc. Natl Acad. Sci. USA 106, 8986–8991 (2009).

  65. 65.

    Thomas, G. W. C. & Hahn, M. W. Determining the null model for detecting adaptive convergence from genomic data: a case study using echolocating mammals. Mol. Biol. Evol. 32, 1232–1236 (2015).

  66. 66.

    Yang, Z. PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

  67. 67.

    Zhang, J., Nielsen, R. & Yang, Z. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol. Biol. Evol. 22, 2472–2479 (2005).

  68. 68.

    McDonald, J. H. & Kreitman, M. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351, 652–654 (1991).

  69. 69.

    Alexa, A., & Rahnenfuhrer, J. topGO: Enrichment Analysis for Gene Ontology. R package v.2.30.1 (2010); https://doi.org/10.18129/B9.bioc.topGO

  70. 70.

    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

  71. 71.

    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

  72. 72.

    Gouy, M., Guindon, S. & Gascuel, O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224 (2010).

  73. 73.

    Rask, T. S., Hansen, D. A., Theander, T. G., Gorm Pedersen, A. & Lavstsen, T. Plasmodium falciparum erythrocyte membrane protein 1 diversity in seven genomes – divide and conquer. PLoS Comput. Biol. 6, e1000933 (2010).

  74. 74.

    UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 43, D204–D212 (2015).

  75. 75.

    Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M. & Barton, G. J. Jalview Version 2 – a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).

  76. 76.

    Claessens, A. et al. Generation of antigenic diversity in Plasmodium falciparum by structured rearrangement of Var genes during mitosis. PLoS Genet. 10, e1004812 (2014).

  77. 77.

    Bopp, S. E. et al. Mitotic evolution of Plasmodium falciparum shows a stable core genome but recombination in antigen families. PLoS Genet. 9, e1003293 (2013).

  78. 78.

    Gronau, I., Hubisz, M. J., Gulko, B., Danko, C. G. & Siepel, A. Bayesian inference of ancient human demography from individual genome sequences. Nat. Genet. 43, 1031–1034 (2011).

  79. 79.

    Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46, 919–925 (2014).

Download references

Acknowledgements

This work was funded by ANR ORIGIN JCJC 2012, LMI ZOFAC, CNRS, CIRMF, IRD, and the Wellcome Trust (grants WT 098051 and WT 206194 to the Sanger Institute, grant 104792/Z/14/Z to C.N.). T.C. holds an MRC DTP Studentship. We thank G. Rutledge for performing the sWGA and J. Rayner and F. J. Ayala for helpful discussion. We thank the PlasmoDB team for promptly making these data available.

Author information

Author notes

    • Thomas D. Otto

    Present address: Centre of Immunobiology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences University of Glasgow, Glasgow, UK

  1. These authors contributed equally: T. D. Otto, A. Gilabert.

Affiliations

  1. Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK

    • Thomas D. Otto
    • , Thomas Crellen
    • , Ulrike Böhme
    • , Mandy Sanders
    • , Samuel O. Oyola
    • , Chris Newbold
    •  & Matthew Berriman
  2. Laboratoire MIVEGEC, UMR 5290-224 CNRS 5290-IRD224-UM, Montpellier, France

    • Aude Gilabert
    • , Céline Arnathau
    • , Christophe Paupy
    • , Patrick Durand
    • , Virginie Rougeron
    • , François Renaud
    •  & Franck Prugnolle
  3. Department of Infectious Disease Epidemiology, Imperial College London, London, UK

    • Thomas Crellen
  4. International Livestock Research Institute, Nairobi, Kenya

    • Samuel O. Oyola
  5. Centre International de Recherches Médicales de Franceville, Franceville, Gabon

    • Alain Prince Okouga
    • , Larson Boundenga
    • , Barthélémy Ngoubangoye
    • , Nancy Diamella Moukodoum
    • , Virginie Rougeron
    • , Benjamin Ollomo
    •  & Franck Prugnolle
  6. Sodepal, Parc of la Lékédi, Bakoumba, Gabon

    • Eric Willaume
  7. Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK

    • Chris Newbold

Authors

  1. Search for Thomas D. Otto in:

  2. Search for Aude Gilabert in:

  3. Search for Thomas Crellen in:

  4. Search for Ulrike Böhme in:

  5. Search for Céline Arnathau in:

  6. Search for Mandy Sanders in:

  7. Search for Samuel O. Oyola in:

  8. Search for Alain Prince Okouga in:

  9. Search for Larson Boundenga in:

  10. Search for Eric Willaume in:

  11. Search for Barthélémy Ngoubangoye in:

  12. Search for Nancy Diamella Moukodoum in:

  13. Search for Christophe Paupy in:

  14. Search for Patrick Durand in:

  15. Search for Virginie Rougeron in:

  16. Search for Benjamin Ollomo in:

  17. Search for François Renaud in:

  18. Search for Chris Newbold in:

  19. Search for Matthew Berriman in:

  20. Search for Franck Prugnolle in:

Contributions

T.D.O., B.O., F.R., C.N., M.B. and F.P. designed the study. C.A., A.P.O., L.B., E.W., B.N., N.D.M., C.P., P.D., V.R. and F.P. collected and assessed samples. C.A. performed the WGA and cell sorting on one sample. S.O.O. performed the WGA on the samples. M.S. organized the sequencing. T.D.O. did assembly and annotation. U.B. did manual gene curation. A.G. and F.P. performed the evolutionary analyses on core genomes. T.D.O., C.N. and M.B. performed the analyses of gene families and dimorphisms. T.C. performed the dating analyses. T.D.O., A.G., C.N., M.B. and F.P. wrote the manuscript. All authors read and approved the paper.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Thomas D. Otto.

Supplementary information

  1. Supplementary Information

    Supplementary Notes 1–3, Supplementary Figs. 1–12, Supplementary References.

  2. Life Sciences Reporting Summary

  3. Supplementary Tables

    Supplementary Tables 1–9.

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41564-018-0162-2

Further reading