Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genomes of all known members of a Plasmodium subgenus reveal paths to virulent human malaria

An Author Correction to this article was published on 14 August 2020

This article has been updated

Abstract

Plasmodium falciparum, the most virulent agent of human malaria, shares a recent common ancestor with the gorilla parasite Plasmodium praefalciparum. Little is known about the other gorilla- and chimpanzee-infecting species in the same (Laverania) subgenus as P. falciparum, but none of them are capable of establishing repeated infection and transmission in humans. To elucidate underlying mechanisms and the evolutionary history of this subgenus, we have generated multiple genomes from all known Laverania species. The completeness of our dataset allows us to conclude that interspecific gene transfers, as well as convergent evolution, were important in the evolution of these species. Striking copy number and structural variations were observed within gene families and one, stevor, shows a host-specific sequence pattern. The complete genome sequence of the closest ancestor of P. falciparum enables us to estimate the timing of the beginning of speciation to be 40,000–60,000 years ago followed by a population bottleneck around 4,000–6,000 years ago. Our data allow us also to search in detail for the features of P. falciparum that made it the only member of the Laverania able to infect and spread in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the dating of the evolution of the Laverania.
Fig. 2: Overview of the analyses of core genes over all Laverania genomes.
Fig. 3: Gene families in the Laverania.
Fig. 4: Clustering of Pir (Rifin and Stevor) proteins families.
Fig. 5
Fig. 6: Overview of the genomic evolution of the Laverania subgenus.

Similar content being viewed by others

Change history

References

  1. Prugnolle, F. et al. African great apes are natural hosts of multiple related malaria species, including Plasmodium falciparum. Proc. Natl Acad. Sci. USA 107, 1458–1463 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu, W. et al. Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature 467, 420–425 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ollomo, B. et al. A new malaria agent in African hominids. PLoS Pathog. 5, e1000446 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Liu, W. et al. Multigenomic delineation of Plasmodium species of the Laverania subgenus infecting wild-living chimpanzees and gorillas. Genome Biol. Evol. 8, 1929–1939 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boundenga, L. et al. Diversity of malaria parasites in great apes in Gabon. Malar. J. 14, 111 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Sundararaman, S. A. et al. Genomes of cryptic chimpanzee Plasmodium species reveal key evolutionary events leading to human malaria. Nat. Commun. 7, 11078 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Silva, J. C., Egan, A., Arze, C., Spouge, J. L. & Harris, D. G. A new method for estimating species age supports the coexistence of malaria parasites and their mammalian hosts. Mol. Biol. Evol. 32, 1354–1364 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Volkman, S. K. et al. Recent origin of Plasmodium falciparum from a single progenitor. Science 293, 482–484 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Otto, T. D. et al. Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts. Nat. Commun. 5, 4754 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Larremore, D. B. et al. Ape parasite origins of human malaria virulence genes. Nat. Commun. 6, 8368 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Pacheco, M. A. et al. Timing the origin of human malarias: the lemur puzzle. BMC Evol. Biol. 11, 299 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Behar, D. M. et al. The dawn of human matrilineal diversity. Am. J. Hum. Genet. 82, 1130–1140 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Palstra, F. P. & Fraser, D. J. Effective/census population size ratio estimation: a compendium and appraisal. Ecol. Evol. 2, 2357–2365 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Roy, S. W. The Plasmodium gaboni genome illuminates allelic dimorphism of immunologically important surface antigens in P. falciparum. Infect. Genet. Evol. 36, 441–449 (2015).

    Article  PubMed  Google Scholar 

  15. Tanabe, K., Mackay, M., Goman, M. & Scaife, J. G. Allelic dimorphism in a surface antigen gene of the malaria parasite Plasmodium falciparum. J. Mol. Biol. 195, 273–287 (1987).

    Article  CAS  PubMed  Google Scholar 

  16. Yasukochi, Y., Naka, I., Patarapotikul, J., Hananantachai, H. & Ohashi, J. Genetic evidence for contribution of human dispersal to the genetic diversity of EBA-175 in Plasmodium falciparum. Malar. J. 14, 293 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. GEN Malaria, Band, G., Rockett, K. A., Spencer, C. C. & Kwiatkowski, D. P. A novel locus of resistance to severe malaria in a region of ancient balancing selection. Nature 526, 253–257 (2015).

    Article  CAS  Google Scholar 

  18. Makanga, B. et al. Ape malaria transmission and potential for ape-to-human transfers in Africa. Proc. Natl Acad. Sci. USA 113, 5329–5334 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wanaguru, M., Liu, W., Hahn, B. H., Rayner, J. C. & Wright, G. J. RH5-Basigin interaction plays a major role in the host tropism of Plasmodium falciparum. Proc. Natl Acad. Sci. USA 110, 20735–20740 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wright, K. E. et al. Structure of malaria invasion protein RH5 with erythrocyte basigin and blocking antibodies. Nature 515, 427–430 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Triglia, T., Thompson, J. K. & Cowman, A. F. An EBA175 homologue which is transcribed but not translated in erythrocytic stages of Plasmodium falciparum. Mol. Biochem. Parasitol. 116, 55–63 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Farrell, A. et al. A DOC2 protein identified by mutational profiling is essential for apicomplexan parasite exocytosis. Science 335, 218–221 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ramiro, R. S. et al. Hybridization and pre-zygotic reproductive barriers in Plasmodium. Proc. Biol. Sci. 282, 20143027 (2015).

    PubMed  PubMed Central  Google Scholar 

  24. Eksi, S. et al. Malaria transmission-blocking antigen, Pfs230, mediates human red blood cell binding to exflagellating male parasites and oocyst production. Mol. Microbiol. 61, 991–998 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Mundwiler-Pachlatko, E. & Beck, H. P. Maurer’s clefts, the enigma of Plasmodium falciparum. Proc. Natl Acad. Sci. USA 110, 19987–19994 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bethke, L. L. et al. Duplication, gene conversion, and genetic diversity in the species-specific acyl-CoA synthetase gene family of Plasmodium falciparum. Mol. Biochem. Parisitol. 170, 65–73 (2010).

    Article  CAS  Google Scholar 

  27. Cunningham, D., Lawton, J., Jarra, W., Preiser, P. & Langhorne, J. The pir multigene family of Plasmodium: antigenic variation and beyond. Mol. Biochem. Parasitol. 170, 65–73 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Niang, M. et al. STEVOR is a Plasmodium falciparum erythrocyte binding protein that mediates merozoite invasion and rosetting. Cell Host Microbe 16, 81–93 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kraemer, S. M. & Smith, J. D. A family affair: var genes, PfEMP1 binding, and malaria disease. Curr. Opin. Microbiol. 9, 374–380 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Gardner, M. J. et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498–511 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Bordbar, B. et al. Genetic diversity of VAR2CSA ID1-DBL2Xb in worldwide Plasmodium falciparum populations: impact on vaccine design for placental malaria. Infect. Genet. Evol. 25, 81–92 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Frank, M., Dzikowski, R., Amulic, B. & Deitsch, K. Variable switching rates of malaria virulence genes are associated with chromosomal position. Mol. Microbiol. 64, 1486–1498 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Scally, A. & Durbin, R. Revising the human mutation rate: implications for understanding human evolution. Nat. Rev. Genet. 13, 745–753 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Carter, R. & Mendis, K. N. Evolutionary and historical aspects of the burden of malaria. Clin. Microbiol. Rev. 15, 564–594 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Auburn, S. An effective method to purify Plasmodium falciparum DNA directly from clinical blood samples for whole genome high-throughput sequencing. PLoS ONE 6, e22213 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Oyola, S. O. et al. Optimized whole-genome amplification strategy for extremely AT-biased template. DNA Res. 21, 661–671 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Oyola, S. O. et al. Whole genome sequencing of Plasmodium falciparum from dried blood spots using selective whole genome amplification. Malar J. 5, 597 (2016).

    Article  CAS  Google Scholar 

  38. Boissiere, A. et al. Isolation of Plasmodium falciparum by flow-cytometry: implications for single-trophozoite genotyping and parasite DNA purification for whole-genome high-throughput sequencing of archival samples. Malar. J. 11, 163 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Quail, M. A. et al. Optimal enzymes for amplifying sequencing libraries. Nat. Methods 9, 10–11 (2012).

    Article  CAS  Google Scholar 

  40. Manske, H. & Kwiatkowski, D. SNP-o-matic. Bioinformatics 25, 2434–2435 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chin, C. S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563–569 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Assefa, S., Keane, T. M., Otto, T. D., Newbold, C. & Berriman, M. ABACAS: algorithm-based automatic contiguation of assembled sequences. Bioinformatics 25, 1968–1969 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carver, T. et al. Artemis and ACT: viewing, annotation and comparing sequences stored in relational database. Bioinformatics 24, 2672–2676 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Otto, T. D., Sanders, M., Berriman, M. & Newbold, C. Iterative Correction of Reference Nucleotides (iCORN) using second generation sequencing technology. Bioinformatics 26, 1704–1707 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. English, A. C. et al. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS ONE 7, e47768 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Otto, T. D. From sequence mapping to genome assemblies. Methods Mol. Biol. 1201, 19–50 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Otto, T. D., Dillon, G. P., Degrave, W. S. & Berriman, M. RATT: Rapid Annotation Transfer Tool. Nucleic Acids Res. 39, e57 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Carver, T. BamView: visualizing and interpretation of next-generation sequencing read. Brief Bioinform. 14, 203–212 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, L., Stoeckert, C. J.Jr. & Roos, D. S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jordan, G. & Goldman, N. The effects of alignment error and alignment filtering on the sitewise detection of positive selection. Mol. Biol. Evol. 29, 1125–1139 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Loytynoja, A. & Goldman, N. An algorithm for progressive multiple alignment of sequences with insertions. Proc. Natl Acad. Sci. USA 102, 10557–10562 (2005).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Loytynoja, A. & Goldman, N. Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science 320, 1632–1635 (2008).

    Article  PubMed  CAS  Google Scholar 

  57. Fletcher, W. & Yang, Z. The effect of insertions, deletions, and alignment errors on the branch-site test of positive selection. Mol. Biol. Evol. 27, 2257–2267 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Markova-Raina, P. & Petrov, D. High sensitivity to aligner and high rate of false positives in the estimates of positive selection in the 12 Drosophila genomes. Genome Res. 21, 863–874 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Morgulis, A., Gertz, E. M., Schäffer, A. A. & Agarwala, R. A fast and symmetric DUST implementation to mask low-complexity DNA sequences. J. Comput. Biol. 13, 1028–1040 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Wootton, J. C. & Federhen, S. Statistics of local complexity in amino acid sequences and sequence databases. Comput. Chem. 17, 149–163 (1993).

    Article  CAS  Google Scholar 

  61. Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shimodaira, H. & Hasegawa, M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol. Biol. Evol. 16, 1114 (1999).

    Article  CAS  Google Scholar 

  64. Castoe, T. A. et al. Evidence for an ancient adaptive episode of convergent molecular evolution. Proc. Natl Acad. Sci. USA 106, 8986–8991 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Thomas, G. W. C. & Hahn, M. W. Determining the null model for detecting adaptive convergence from genomic data: a case study using echolocating mammals. Mol. Biol. Evol. 32, 1232–1236 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yang, Z. PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Zhang, J., Nielsen, R. & Yang, Z. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol. Biol. Evol. 22, 2472–2479 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. McDonald, J. H. & Kreitman, M. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351, 652–654 (1991).

    Article  CAS  PubMed  Google Scholar 

  69. Alexa, A., & Rahnenfuhrer, J. topGO: Enrichment Analysis for Gene Ontology. R package v.2.30.1 (2010); https://doi.org/10.18129/B9.bioc.topGO

  70. Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gouy, M., Guindon, S. & Gascuel, O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Rask, T. S., Hansen, D. A., Theander, T. G., Gorm Pedersen, A. & Lavstsen, T. Plasmodium falciparum erythrocyte membrane protein 1 diversity in seven genomes – divide and conquer. PLoS Comput. Biol. 6, e1000933 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 43, D204–D212 (2015).

  75. Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M. & Barton, G. J. Jalview Version 2 – a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Claessens, A. et al. Generation of antigenic diversity in Plasmodium falciparum by structured rearrangement of Var genes during mitosis. PLoS Genet. 10, e1004812 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bopp, S. E. et al. Mitotic evolution of Plasmodium falciparum shows a stable core genome but recombination in antigen families. PLoS Genet. 9, e1003293 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gronau, I., Hubisz, M. J., Gulko, B., Danko, C. G. & Siepel, A. Bayesian inference of ancient human demography from individual genome sequences. Nat. Genet. 43, 1031–1034 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46, 919–925 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by ANR ORIGIN JCJC 2012, LMI ZOFAC, CNRS, CIRMF, IRD, and the Wellcome Trust (grants WT 098051 and WT 206194 to the Sanger Institute, grant 104792/Z/14/Z to C.N.). T.C. holds an MRC DTP Studentship. We thank G. Rutledge for performing the sWGA and J. Rayner and F. J. Ayala for helpful discussion. We thank the PlasmoDB team for promptly making these data available.

Author information

Authors and Affiliations

Authors

Contributions

T.D.O., B.O., F.R., C.N., M.B. and F.P. designed the study. C.A., A.P.O., L.B., E.W., B.N., N.D.M., C.P., P.D., V.R. and F.P. collected and assessed samples. C.A. performed the WGA and cell sorting on one sample. S.O.O. performed the WGA on the samples. M.S. organized the sequencing. T.D.O. did assembly and annotation. U.B. did manual gene curation. A.G. and F.P. performed the evolutionary analyses on core genomes. T.D.O., C.N. and M.B. performed the analyses of gene families and dimorphisms. T.C. performed the dating analyses. T.D.O., A.G., C.N., M.B. and F.P. wrote the manuscript. All authors read and approved the paper.

Corresponding author

Correspondence to Thomas D. Otto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publishers note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–3, Supplementary Figs. 1–12, Supplementary References.

Life Sciences Reporting Summary

Supplementary Tables

Supplementary Tables 1–9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otto, T.D., Gilabert, A., Crellen, T. et al. Genomes of all known members of a Plasmodium subgenus reveal paths to virulent human malaria. Nat Microbiol 3, 687–697 (2018). https://doi.org/10.1038/s41564-018-0162-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0162-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing