Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Broadly neutralizing antibodies from human survivors target a conserved site in the Ebola virus glycoprotein HR2–MPER region

Abstract

Ebola virus (EBOV) in humans causes a severe illness with high mortality rates. Several strategies have been developed in the past to treat EBOV infection, including the antibody cocktail ZMapp, which has been shown to be effective in nonhuman primate models of infection1 and has been used under compassionate-treatment protocols in humans2. ZMapp is a mixture of three chimerized murine monoclonal antibodies (mAbs)3,4,5,6 that target EBOV-specific epitopes on the surface glycoprotein7,8. However, ZMapp mAbs do not neutralize other species from the genus Ebolavirus, such as Bundibugyo virus (BDBV), Reston virus (RESTV) or Sudan virus (SUDV). Here, we describe three naturally occurring human cross-neutralizing mAbs, from BDBV survivors, that target an antigenic site in the canonical heptad repeat 2 (HR2) region near the membrane-proximal external region (MPER) of the glycoprotein. The identification of a conserved neutralizing antigenic site in the glycoprotein suggests that these mAbs could be used to design universal antibody therapeutics against diverse ebolavirus species. Furthermore, we found that immunization with a peptide comprising the HR2–MPER antigenic site elicits neutralizing antibodies in rabbits. Structural features determined by conserved residues in the antigenic site described here could inform an epitope-based vaccine design against infection caused by diverse ebolavirus species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cross-reactive neutralizing antibodies from BDBV survivors bind near to the membrane proximal region of the GP.
Fig. 2: Neutralization and protective efficacy of HR2–MPER-specific mAbs.
Fig. 3: Structural and functional analysis of GP residues that are important for mAb cross-reactivity and neutralization.
Fig. 4: Immunization with the HR2–MPER peptide elicits peptide and protein antigen-reactive and neutralizing antibody responses.

Similar content being viewed by others

References

  1. Qiu, X. et al. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 514, 47–53 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Lyon, G. M. et al. Clinical care of two patients with Ebola virus disease in the United States. N. Engl. J. Med. 371, 2402–2409 (2014).

    Article  PubMed  CAS  Google Scholar 

  3. Qiu, X. et al. Characterization of Zaire ebolavirus glycoprotein-specific monoclonal antibodies. Clin. Immunol. 141, 218–227 (2011).

    Article  PubMed  CAS  Google Scholar 

  4. Qiu, X. et al. Successful treatment of Ebola virus-infected cynomolgus macaques with monoclonal antibodies. Sci. Transl. Med. 4, 138ra81 (2012).

    Article  PubMed  Google Scholar 

  5. Olinger, G. G. Jr et al. Delayed treatment of Ebola virus infection with plant-derived monoclonal antibodies provides protection in rhesus macaques. Proc. Natl Acad. Sci. USA 109, 18030–18035 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wilson, J. A. et al. Epitopes involved in antibody-mediated protection from Ebola virus. Science 287, 1664–1666 (2000).

    Article  PubMed  CAS  Google Scholar 

  7. Murin, C. D. et al. Structures of protective antibodies reveal sites of vulnerability on Ebola virus. Proc. Natl Acad. Sci. USA 111, 17182–17187 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Davidson, E. et al. Mechanism of binding to Ebola virus glycoprotein by the ZMapp, ZMAb, and MB-003 cocktail antibodies. J. Virol. 89, 10982–10992 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Flyak, A. I. et al. Cross-reactive and potent neutralizing antibody responses in human survivors of natural ebolavirus infection. Cell 164, 392–405 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Zhao, Y. et al. Toremifene interacts with and destabilizes the Ebola virus glycoprotein. Nature 535, 169–172 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Weissenhorn, W., Carfi, A., Lee, K. H., Skehel, J. J. & Wiley, D. C. Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain. Mol. Cell 2, 605–616 (1998).

    Article  PubMed  CAS  Google Scholar 

  12. Bornholdt, Z. A. et al. Isolation of potent neutralizing antibodies from a survivor of the 2014 Ebola virus outbreak. Science 351, 1078–1083 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Wec, A. Z. et al. Antibodies from a human survivor define sites of vulnerability for broad protection against ebolaviruses. Cell 169, 878–890 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Yu, J. S. et al. Detection of Ebola virus envelope using monoclonal and polyclonal antibodies in ELISA, surface plasmon resonance and a quartz crystal microbalance immunosensor. J. Virol. Methods 137, 219–228 (2006).

    Article  PubMed  CAS  Google Scholar 

  15. Cross, R. W. et al. The domestic ferret (Mustela putorius furo) as a lethal infection model for 3 species of Ebolavirus. J. Infect. Dis. 214, 565–569 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kozak, R. et al. Ferrets infected with Bundibugyo virus or Ebola virus recapitulate important aspects of human filovirus disease. J. Virol. 90, 9209–9223 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Ilinykh, P. A. et al. Chimeric filoviruses for identification and characterization of monoclonal antibodies. J. Virol. 90, 3890–3901 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Malashkevich, V. N. et al. Core structure of the envelope glycoprotein GP2 from Ebola virus at 1.9-Å resolution. Proc. Natl Acad. Sci. USA 96, 2662–2667 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lee, J. et al. Structure of the Ebola virus envelope protein MPER/TM domain and its interaction with the fusion loop explains their fusion activity. Proc. Natl Acad. Sci. USA 114, E7987–E7996 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zhao, X. et al. Immunization-elicited broadly protective antibody reveals ebolavirus fusion loop as a site of vulnerability. Cell 169, 891–904 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Muster, T. et al. A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J. Virol. 67, 6642–6647 (1993).

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Zwick, M. B. et al. Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus type 1 glycoprotein gp41. J. Virol. 75, 10892–10905 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Montero, M., van Houten, N. E., Wang, X. & Scott, J. K. The membrane-proximal external region of the human immunodeficiency virus type 1 envelope: dominant site of antibody neutralization and target for vaccine design. Microbiol. Mol. Biol. Rev. 72, 54–84 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ekiert, D. C. et al. Antibody recognition of a highly conserved influenza virus epitope. Science 324, 246–251 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Sui, J. et al. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat. Struct. Mol. Biol. 16, 265–273 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Corti, D. et al. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333, 850–856 (2011).

    Article  PubMed  CAS  Google Scholar 

  27. Flyak, A. I. et al. Mechanism of human antibody-mediated neutralization of Marburg virus. Cell 160, 893–903 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lee, J. E. et al. Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature 454, 177–182 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Lee, J. E. et al. Techniques and tactics used in determining the structure of the trimeric ebolavirus glycoprotein. Acta Crystallogr. D Biol. Crystallogr. 65, 1162–1180 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Towner, J. S. et al. Generation of eGFP expressing recombinant Zaire ebolavirus for analysis of early pathogenesis events and high-throughput antiviral drug screening. Virology 332, 20–27 (2005).

    Article  PubMed  CAS  Google Scholar 

  31. Lubaki, N. M. et al. The lack of maturation of Ebola virus-infected dendritic cells results from the cooperative effect of at least two viral domains. J. Virol. 87, 7471–7485 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).

    Article  PubMed  CAS  Google Scholar 

  33. Lander, G. C. et al. Appion: an integrated, database-driven pipeline to facilitate EM image processing. J. Struct. Biol. 166, 95–102 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Voss, N. R., Yoshioka, C. K., Radermacher, M., Potter, C. S. & Carragher, B. DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy. J. Struct. Biol. 166, 205–213 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. van Heel, M., Harauz, G., Orlova, E. V., Schmidt, R. & Schatz, M. A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24 (1996).

    Article  PubMed  Google Scholar 

  36. Davidson, E. & Doranz, B. J. A high-throughput shotgun mutagenesis approach to mapping B-cell antibody epitopes. Immunology 143, 13–20 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Bodanszky, M. & Bodanszky, A. The Practice of Peptide Synthesis 2nd edn (Springer, Berlin, 1994).

  38. Grant, G. A. Synthetic Peptides: A User’s Guide (W.H. Freeman, New York, 1992).

  39. Fields, G. B. & Noble, R. L. Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J. Pept. Protein Res. 35, 161–214 (1990).

    Article  PubMed  CAS  Google Scholar 

  40. Stuber, W., Knolle, J. & Breipohl, G. Synthesis of peptide amides by Fmoc-solid-phase peptide synthesis and acid labile anchor groups. Int J. Pept. Protein Res. 34, 215–221 (1989).

    Article  PubMed  CAS  Google Scholar 

  41. Atherton, E., Cameron, L. R. & Sheppard, R. C. Peptide synthesis: part 10. Use of pentafluorophenyl esters of fluorenylmethoxycarbonyl amino acids in solid phase peptide synthesis. Tetrahedron 44, 843–857 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project received support from the Defense Threat Reduction Agency (grant HDTRA1-13-1-0034 to J.E.C. and A.B.), US NIH grants U19 AI109711 (to J.E.C. and A.B.), U19 AI109762 (to E.O.S. and A.B.W.), NIH contract HHSN272201400058C (to B.J.D.) and R01 AI067927 (to E.O.S.). E.O.S. is an investigator in the Pathogenesis of Infectious Disease of the Burroughs Wellcome Fund. The project was supported by NCRR grant UL1 RR024975-01 and is now at the National Center for Advancing Translational Sciences, grant 2 UL1 TR000445-06. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. We thank S. Graham and L. Loerinc at Vanderbilt University for help with the expression of recombinant antibodies. We thank P. Younan at UTMB for assisting with statistical calculations. We also thank A. McNeal, S. Reddy and R. Fong for technical help with shotgun mutagenesis epitope mapping. C.D.M. is supported by a National Science Foundation Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

A.I.F., A.B. and J.E.C. conceived the study. A.I.F., N.Kuzmina., C.D.M., C.B., E.D., P.G., P.A.I., X.S., K.H., P.R., H.T., R.L., N.Kose., H.K. and G.S. conducted the experiments. C.P.G., M.L.F., D.W.W. and E.O.S. provided reagents. A.I.F., N.Kuzmina., C.D.M., E.D., P.G., P.A.I., X.S., P.R., B.J.D., T.G.K., A.B.W., A.B. and J.E.C. analysed the data. A.I.F. and J.E.C. wrote the paper. All authors reviewed, edited and approved the paper.

Corresponding authors

Correspondence to Alexander Bukreyev or James E. Crowe Jr.

Ethics declarations

Competing interests

C.B., E.D. and B.J.D. are employees of Integral Molecular. B.J.D. is a shareholder of Integral Molecular. J.E.C. is a consultant for Sanofi, and is on the Scientific Advisory Boards of PaxVax, CompuVax, GigaGen and Meissa Vaccines, is a recipient of previous unrelated research grants from Moderna and Sanofi and is founder of IDBiologics. A.I.F., P.A.I., A.B. and J.E.C. are co-inventors on a patent applied for that includes the BDBV223, BDBV317 and BDBV340 antibodies.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1, Supplementary Figures 1–4.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flyak, A.I., Kuzmina, N., Murin, C.D. et al. Broadly neutralizing antibodies from human survivors target a conserved site in the Ebola virus glycoprotein HR2–MPER region. Nat Microbiol 3, 670–677 (2018). https://doi.org/10.1038/s41564-018-0157-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0157-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing